ADM NO	•
ALLIANCE HIGH SCHOOL	
FORM 4: BIOLOGY PAPER: 2HOURS	
TERM 1, 2016	
1. Below is a photograph of a mammalian vertebra. Study it and answer the qu	estions below
· · · · · · · · · · · · · · · · · · ·	
. — В	C
i)Identify the view from which the photograph was taken	(1mk)
(ii) Name the vertebra above	(1mk)
(iii) On the photograph name parts labeled A to D	(4mks
State how the above structure is adapted to perform its function	(3mks)
-	
•	
	factivities— a consideration in property and the faction of the construction of the faction of t

CLASS.....

2. Study photograph P below and use it to answer the following questions.

PHOTOGRAPH P

(a) On the photograph label a bract	(lmk).
(b) Describe the arrangement of stamens and structure of corolla and calyx	
(i) Stamens	(1mk)
	and the second second
(ii) Corolla (1mk)	!
(iii) Calyx (1mk)
(c) (i) Name the class of the plant from which the photograph was taken	(1mk)
(ii)Using only observable features on the photograph give one reason for your answer	er in (c)
(i) above	(1mk)
(d) (i) state the agent of pollination for the flower shown on the photograph	(1mk)

(ii) Give two reasons for your answer in d (i) above	(2mks)
(e) (i) Which type of ovary is found in the flower on the photograph	(1mk)
(ii) Give a reason for your answer in e (i) above	(1mk)
(f) The actual length of the flower measured 14cm. Work out the magnificat	ion of the
Photograph	(2mks)
	:
3. Explain why the removal of a placenta from the walls of the uterus before 1	birth would
result in the death of the foetus.	(2mks)
4. Explain why decomposers are never included in a food chain	(lmk)
5. Name the fins that prevent yawing and pitching movements	(2mk)
6(a)Explain why athletes train in high altitude in preparation for competition	(2mks)

(b) Name the characteristic that makes the red blood cells to pass through the	capillaries
	(1mk)
(c)In what form is Carbon (IV) Oxide transported in the erythrocytes	(1mk)
7. State three applications of genetics	(3mks)
	<u></u>
8. State the adaptations of herbivores which enable them to digest cellulose.	(2mks)
9. Below is a nucleotide strand	
A- A-G- T- C- C-G- A- S-P-S-P-S-P-S-P-S-P-S-	
(a) i)Identify the strand above . Give a reason	(2mks)
(ii) State complimentary nucleotide strand	(1mk)
(b)State an example of a sex linked trait in Y chromosome and X chromosom	ne in human
•	(2mk)
c) State a genetic disorder caused by processing extra sex chromosome	(1mk

(a) (i) State the pos	sible genotype of the fatl	her.	(1mk)
(ii) Using a pun	net square work out the	genotypes of the offsprings	(3 mk)
•	<i>2</i> .	•	
			· .
(b) If the moth	er is rhesus negative and	the father is rhesus positiv	e what condition is
the child likely to d	levelop		(1mk)
(c) Explain wh	y the second born child i	s at risk of death than the fi	irst born child if no
Precaution is taken			(2mks)
			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
11. Define the term	ı species		(2mks)
	1		
		labeled P ₁ , P ₂ , P ₃ .Benedict t that it has been boiled.P1	
(a) Iodine and Bene	edict's solutions were us	ed to test food substances c	ontained in solution P ₁ .
Record the expecte	ed results in the table belo	ow.	(4mks)
Food substance	Procedure	Observation	Conclusion
			-
	•		

•				de.				1 to 15	
•			•						
, - •			•				•	•	
				127 5		-1. 44	+-h	follow	
		ere Labeled	X_i, X_i	and X ₃ . Tr			tube as	ionow	». —
	st tube	<u>.</u>			reatment of solut				
	X_i	-						· D	
	X ₂	Pı		f solution P					
	X ₃			ml of solution					
he three te	YOU THINKS WA								
he three te	between	30°C and 3	7°C.The	e set ups wa	s left for	30 mi	inutes	-	
)The food	between substance c	30^{0} C and 3 ontained in ly x_2 had re	7°C.The each te	e set ups wa st tube was sugar. Fill i	s left for tested by	30 mi y using le belo	inutes g Benedi ow.	ict's sol	ut
)The food	between substance cown that on	30^{0} C and 3 ontained in ly x_2 had re	7°C.The each te	e set ups wa st tube was sugar. Fill i	s left for tested by	30 mi y using le belo	inutes g Benedi	ict's sol	ut
The food results sho	between substance cown that on	30^{0} C and 3 ontained in ly x_2 had re	7°C.The each te	e set ups wa st tube was sugar. Fill i	s left for tested by	30 mi y using le belo	inutes g Benedi ow.	ict's sol	ut
)The food results sho Test tu	between substance c own that on abe	30^{0} C and 3 ontained in ly x_2 had re	7°C.The each te	e set ups wa st tube was sugar. Fill i	s left for tested by	30 mi y using le belo	inutes g Benedi ow.	ict's sol	ut
)The food results sho Test to X ₁	between substance c own that on abe	30^{0} C and 3 ontained in ly x_2 had re	7°C.The each te	e set ups wa st tube was sugar. Fill i	s left for tested by	30 mi y using le belo	inutes g Benedi ow.	ict's sol	ut
)The food results sho X ₁	between substance cown that on the	30°C and 3 ontained in ly x ₂ had re	7°C.The each te ducing	e set ups wa st tube was sugar. Fill i	s left for tested by n the tab	30 mi	inutes g Benedi ow. Conclus	sion	(3
)The food results sho X ₁	between substance cown that on the	30°C and 3 ontained in ly x ₂ had re	7°C.The each te ducing	e set ups wa st tube was sugar. Fill in	s left for tested by n the tab	30 mi	inutes g Benedi ow. Conclus	ict's sol	(3
Test tu X ₁ X ₂ X ₃ (c) Accou	between substance cown that on the	30°C and 3 ontained in ly x ₂ had re	7°C.The each te ducing	e set ups wa st tube was sugar. Fill in	s left for tested by n the tab	30 mi	inutes g Benedi ow. Conclus	sion	(3
Test tu X ₁ X ₂ X ₃ (c) Accou	between substance cown that on the	30°C and 3 ontained in ly x ₂ had re	7°C.The each te ducing	e set ups wa st tube was sugar. Fill in	s left for tested by n the tab	30 mi	inutes g Benedi ow. Conclus	sion	(3
Test to X ₁ X ₂ X ₃ (c) Accou	between substance cown that on the	30°C and 3 ontained in ly x ₂ had re	7°C.The each te ducing	e set ups wa st tube was sugar. Fill in	s left for tested by n the tab	30 mi	inutes g Benedi ow. Conclus	sion	(3
Test tu X ₁ X ₂ X ₃ (c) Accou	between substance cown that on the	30°C and 3 ontained in ly x ₂ had re	7°C.The each te ducing	e set ups wa st tube was sugar. Fill in	s left for tested by n the tab	30 mi	inutes g Benedi ow. Conclus	sion	(3

contra del la 15	son for your answer	in d (i) above	and the second	(1 m
v		•		
13. A study w	as carried out to inv		,	mammals in a game
			sults are shown in t	
HABITAT			R IN HABITAT	de table below
	WILDEBEEST	BUFFALO	RHINOCERAS	LESSER KUDU
GRASSLAND	-	63	13	-
WOODED	56	87	50	25
GRASSLAND				
FOREST	10	* .	50	75
habitats	itable method that o		n used to obtain the	(1mk)
habitats	itable method that o	could have been	n used to obtain the	(1mk)
habitats	itable method that o	could have been	n used to obtain the	(1mk) e wooded grassland.
habitats (ii)State two rea	itable method that of	could have been	n used to obtain the	
habitats (ii)State two rea	itable method that o	could have been	n used to obtain the	(1mk) e wooded grassland.
habitats (ii)State two rea	itable method that of	could have been	ies were found in th	(1mk) e wooded grassland.
habitats (ii)State two rea	itable method that of	ammalian spec	n used to obtain the	(1mk) e wooded grassland.
habitats (ii)State two rea	itable method that of s. Isons why all the method that of second the method that of second the feeding	ammalian spec habits of (i) Wildbees (ii) Lesser ku	n used to obtain the ies were found in the	(1mk) e wooded grassland.

14. In an experiment, wondering Jew plants with green leaves were kept in the dark for one hour. Strips of leaves measuring 5 mm by 10 mm from these plants were then cut and floated with the lower epidermis down on the experimental solutions in Petri-dishes. The experimental solutions were sodium chloride and potassium chloride with equal concentration of 1.50M. The Petri dishes were then placed in light and temperature kept at 20°C. After 5 minutes, a leaf strip was removed from each experimental solution, quickly blotted dry and the percentage number of open stomata was found after counting under a microscope. This procedure was repeated with other strips from the same experimental solutions at intervals of 10 minutes. The results are shown in the table below.

Time in minutes	5	15	25	35	45	55	60	65	70
% open stomata in KCl Sol. (1.50	0	0	20	76	82	86	90	93 ·	98
M)									
% Open stomata in NaCl Sol. (1.50	0	0	6	22	42	45	50	54	58
M)									

a)On same axes, plot graph for percentage open stomata in each solutions against time in minutes (7mks)

c) Using the graph in (a) above, give an expla	nation for the behavior of guard cel	ls during
this experiment.		(4mks)
		· ·
·		

e) Explain how the stomata opens using the photosynthetic theory only.	(5mks)
	·
15. Explain how the exoskeleton in arthropods is adapted to its functions	(13mks)
	·
	·
_	