ALLIANCE HIGH SCHOOL FORM 3 CHEMISTRY END OF TERM II EXAM 2015 TIME 2 HOURS

NAME	Adm No	Class
Answer all the question in the spaces provide	đ.	
When a hydrocarbon was burnt, the total ma	== ass of the products was found to be	oe greater than original mass of
hydrocarbon.		
Explain		(2 mks)
		•
The set up below was used to study so	me properties of air.	
	T	
	Iron wool	
	Test tube	
	Beaker	
	터 -	
	Water	
	-	
State and explain two observations that	at would be made at the end of the	e experiment. (3 mks)
<u> 1948 - 1959 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968 - 1968</u>		
. Charcoal is a fuel that is used for cook	ing, when it burns it forms two o	xides
a) Name the two oxides.		(2 mks)
b) State two uses of the oxides for	ormed when charcoal is burnt in e	excess air. (2 mks

- 4. Name the following compounds
 - a) CH₃ CH CH₂ CH₃ CH₃
 - b) CH₂ CHCH₂ CH CH₃ CI
 - c) CH CCH₂ CH₂ CH CH₃ CH₃
- 5. Draw and name isomers of C₅H₁₂

(3 mks)

- 3.2g of XOH reacts completely with 20cm³ of 2M sulphuric (VI) acid solution (0 = 16, H=1, S = 32)
 Write the chemical equation of the reaction. (1 mk)
 - b) Calculate the relative atomic mass of X in the formula of XOH. (3 mks)

- 7. The electron arrangement of ions A^{3+} and B^{2-} are 2,8 and 2, 8,8 respectively.
 - a) Write the electron arrangement of the atoms.

 A and B.

(2 mks)

- b) Write the formula of the compound that would be formed between A and B. (1 mk)
- 8. If it takes 30 seconds for 100cm³ of carbon (IV) oxide to diffuse through a porous plate, how long will it take 100cm³ of nitrogen (I V) oxide to diffuse across the same plate under similar conditions?

 (C=12, N=14, 0=16)

 (3 mks)

- a) Why is it necessary to heat the moist glass wool before heating Zinc powder. (1 mk)
- b) What was observed when zinc was heated and after the reaction. (2 mks)
- c) What property of gas L makes it possible to be collected as shown in the diagram. (1 mk)

I i	ron (III) Oxide was found to be contaminated with copper (II) Sulphat) Describe how a pure sample of Iron (III) Oxide can be obtained.	(3 mk
-		
- n)	When lead (II) nitrate was heated, one of the products was a brown g Write the equation of the reaction that occurs.	
	b) If 290cm³ of the brown gas was produced, calculate the mass heated gas volume. = 24dm³, RFM of lead (II) nitrate = 331).	of lead (II) nitrate that was (3 mks)
		(3 mks)
	Define the following process a) Deliquescence	`
	b) Hygroscopy	
	c) Neutralization	
	Distinguish between the terms isomers and isotopes.	- (

A Second

Chl	orine water is a mixture of two acids (a) Name the two acids	(2 mks)
b)	State the observation made when moist red litmus is placed in chlorine water.	(1 mk)
c)	Write an equation when chlorine water is exposed to sunlight.	(1 mk)
and	draw the structure of hydroxonium ien	(3 mks)
	•	
a)	State Charles Law.	(1 mk)
b)	The Capacity of a balloon to hold a gas at 10°C is 1dm³ before it bursts due to ex. Show whether it will hold or not at 40°C if pressure remains constant.	xpansion. (3 mks)
	i ·	
		-

	bility for a metal to made into a wire.	(1 mk)
b) M	finimum energy required for a chemical reaction to start.	(1 mk)
	culate the number of hydrogen ions in 20cm ³ of 0.5M sulphuric (VI) acid. 6.0 X 10 ²³)	(3 mks)
	e laboratory preparation of carbon (IV) oxide, calcium carbonate and dilute supl acid was used. The reaction stopped after a short time. Explain.	huric (2 mks)
· * * * * *	가 하면 하지 않는 생생님이 되었다. 이 것 같아 보는 사람들이 되었다. 그런 사람들이 되었다. 생각이 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1988년 -	
Sodi	um burns in air to form two oxides. Name the two oxides.	(2 mks)
b)	Write the equation when the oxides are dissolved in water.	(2 mks)
	ysis of a compound showed that it had the following composition 69.42% carbon	n, 4.13%
nydro a)	ogen and the rest oxygen. Determine the empirical formula of the compound ($C = 12$, $H = 1$, $O = 16$)	(2 mks)
	; ·	
b)	Given the molecular mass of the compounds 242. Determine its molecular for	ormula. (2 mks

b) Study the flow chart below and answer the questions that follow.

(1 mk)

	Write the equation of reaction in step II	(1 mk)
	Name the process that takes place in step III.	(1 mk)
•	Name and Draw the structural formula of substance K.	(2 mks)
	Write the equation of reaction that takes place in Step (V)	(1 mk)
	The relative molecular mass of J is 16800. Calcualte the number of monome	rs that makes J. (2 mks)
	Name two compound that can be reacted to produce substance H.	(1 mk)