FORM 3 CHEMISTRY END OF TERM 1 EXAM TIME 2 HOURS

	e atomic mass ·	% abudance	
K1 K₂	62.5 64.9	69 3.	
Calculat	e the relative atomic r	nass of element K.	(3mks
•	,		
	e a		
			٠,
	•		
	• .		
Distinct			
Distingu	iish between ionizatior	n energy and electron affinity of an e	element.(2mk
Distingu	iish between a covale	nt bond and a coordinate bond.	(2mk
_			·
	diagram to show bond	ding in	
(a) An	ammonium ion.		(2mk

- (b) A compound formed when nitrogen reacts with fluorine (F=9, N=7) 2mks)
- (c) Sodium oxide (Na=11 0=8)

- 5. An isotope of element E has 34 neutrons and its mass number is 64. E forms a cation with 28 electrons. Write the formula of the cation indicating the mass and atomic numbers. (2mks)
- 6. Explain why there is a general increase in the first ionization energies of the elements in period 3 of the periodic table from left to right. (2mks)
- 7. Describe how the following reagents can be used to prepare lead (II) sulphate. solid potassium sulphate, solid lead (II) carbonate, dilute nitric (V) acid and distilled water. (3mks)

- 8. Explain how you would obtain sodium carbonate from a mixture of lead (II) carbonate and sodium carbonate powders. (3mks)
- 9. Study the flow chart below and answer the questions that follow.

Identify

- (a) Solution K.
- (b) Solid L
- (c) Write a chemical equation for the reaction between solution K and Ag₂O.
- 10. (a) Distinguish between efflorescent and a hygroscopic substance. (2mks)
 - (b) Give one use of hygroscopic substance in the laboratory. (1mk)
- 11. Write equations to show the effects of heat on each of the following.

 (a) Anhydrous Copper (II) sulphate.
 - (b) Lead (II) nitrate.

(c) Sodium hydrogen carbonate.

(3mks)

- 12. By using aqueous sodium chloride, describe how a student can dinstinguish calcium ions from lead ions. (2mks)
- 13. Explain how the following substances conduct an electric current.
 - (a) Aluminium metal.
 - (b) Molten sodium chloride.

- 14. Explain why burning magnesium continues to burn in a gas jar containing carbon (IV) oxide while a burning splint is extinguished. (3mks)
- 15. The apparatus shown below was used to investigate the effects of carbon (II) oxide on copper (II) oxide.

(a) State the observation that was made in the combustion tube at the en experiment.	d of the (1mk)
(b) Write an equation for the reaction that took place in the container with water.	lime (1mk)
(c) Why is it necessary to burn the gas coming out of tube K.	(1mk)
16. Diamond and graphite are allotropes of carbon. (a) What is meant by allotropes.	(1mk)
(b) Explain why graphite can be used as a lubricant while diamond cannot	ot. (2mks)
17. A fixed mass of a gas has a volume of 200cm ² at 20 ⁰ c and 750mm Hg processes the volume the gas would occupy at 40 ⁰ c and 700mm Hg press	
	(3mks)

18.300cm³ of oxygen diffused from a certain apparatus in 100 seconds. Calculate the time taken for 200cm³ of carbon (IV) oxide to diffuse under the same conditions. (3mks)

(C=12, 0=16)

19. Calculate the amount of calcium carbonate that would remain if 10g of calcium carbonate reacts with 100cm³ of 1M hydrochloric acid. (3mks)

20. Calculate the mass of nitrogen (IV) oxide gas that would occupy the same volume as 6g of hydrogen gas at the room temperature and pressure (3mks) H=1, N=14, 0=16.

21. A weighted sample of crystalline sodium carbonate (Na₂ CO₃ nH₂0) was heated in a crucible until there was no further change in mass. The mass of the sample reduced by 14.5%. Calculate the number of moles (n) of water of crystallization. (3mks)

(Na=23, 0=16, c=12, h=1)

22. When a hydrocarbon was comple	etely burnt in oxygen 4.2g of	f carbon (IV) oxide
and 1.71g of water were formed.	Determine the empirical for	rmula of the
hydrocarbon.	• .	(3mks)
(H=1 C=12, 0=16)		

- 23. Analysis of a compound showed that it had the following composition 69.42% carbon, 4.13% hydrogen and the rest oxygen.
 - (a) Determine the empirical formula of the compound.

- (b) If the mass of one mole of the compound is 242, determine its molecular formula. (1mk)
- 24.20cm³ of concentrated sulphuric (VI) acid was diluted to 100cm³. 25cm of this solution was neutralized by 30cm³ of 0.2M sodium hydroxide solution. Determine the mass of sulphuric (VI) acid that was in the concentrated acid. (S=32, H=1, 0=16) (3mks)

25. Study the information in the table below and answer the questions that follow.

Element	electronic arrangement of stable ion	atomic radius		ionic radius
N	2,8,8	0.197	1	0.099
Р	2,8,8	0.099	22	0.181
R .	2,8	0.160	46	0.065
S	2,8	0.186		0.095
Ť	2	0.152	29°	0.068
	2.8	0.072	£.:	0.136

(a) (i) Write the formula of the compound formed when N reacts with P.

(1mk) N= 2"

- (i) Identify the elements which belong to the third period of the periodic table. (2mks)
- (ii) Which of the elements identified in (aii) above comes first in the third period. Explain. (2mks)
- (iii) Select two elements which are non-metals.

(2mks)

(iv) The table below gives some properties of substances 1,II, III and IV. Study and answer the questions that follow.

	Electrical	conductivity		
Substance	Solid	Molten	M,P°C	B.P ⁰ C
I	Does not conduct	Conducts	801	1420
<u> </u>	conducts	Conducts	650	1107
III	Does not conduct	Does not conduct	1700	2200
IV ·	Does not conduct	Does not conduct	113	440

(i) What type of bonding exists in substances I and II.

(2mks)

(ii) Which substance is likely to be sulphur. Explain.