AME	CLS	.C/NC)ADM

DATE DONE
INVIGILATOR
DATE RETURNED
DATE REVISED

CHEMISTRY PP 3
MARCH SERIES 2016
FORM FOUR
TIME: 2 ½ HOURS

INSTRUCTIONS

- ❖ Answer all questions in the spaces provided.
- ❖ You are required to spend the 15 min of the 2 ½ hrs allowed for this paper reading the whole paper carefully before commencing your work.
- Check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.
- ❖ All workings must be clearly shown.

FOR EXAMINER'S USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1	22	54.83 0. View
2	11	
3	07	
TOTAL ·	40	

1. You are provided with Sodium hydroxide labelled A, 0.1M hydrochloric acid labelled B, Carboxylic acid labelled C, Solution D prepared by diluting 25cm³ of solution A with distilled water to 250cm³ of solution.

PROCEDURE 1

- (i) Fill the burette with solution B.
- (ii) Pipette 25 cm³ of solution D into a conical flask.
- (iii) Add a few drops of phenolphthalein indicator and titrate with B.
- (iv) Repeat the procedure above to get 2 more values.
- (v) Record the result in the table 1 below.

Table 1

Titre	1	2	3
Final burette reading			102
Initial burette reading		<u> </u>	7 17 14 273
Volum of B used (cm ³)		1.00	

(4 Mks)

1. Determine the average volume of B used.

(1 Mk)

- 2. What is the molarity of Sodium hydroxide in;
- (a) Solution D.

(2 Mks)

(b) Solution A.

(2 Mks)

PROCEDURE 2

- (i) Place solution C in a clean burette. Transfer 16 cm³ of C into a plastic beaker. Note the initial temperature of this solution and note it in the table 2 below.
- (ii) Measure 4 cm³ of solution A using a measuring cylinder and add it into the solution C in the plastic beaker.
- (iii) Stir the mixture with the thermometer immediately and note the highest temperature

Repeat the experiment with the other volumes of A and C as shown in the table below and complete it.

NB: Always rinse the thermometer and plastic beaker with distilled water after each experiment.

Table 2

Volume of solution c cm ³	16	12	8	6	4	2
Volume of solution A (cm ³)	4	8	12	14	16	18
Final temperature (°C)						(2
Initial temperature (°C)						
Change in temperature	***************************************					

- 3. On the grid provided, plot a graph of temperature change (Y-axis) against volume of sodium hydroxide A (x - axis)(4 Mks)
- 4. From the graph determine the volume of Sodium hydroxide A used to neutralize the carboxylic acid. (1 Mk)
- 5. Determine the volume of carboxylic used for neutralization. (1 Mk)
- 6. Calculate the ratio between the volume of A and the volume of c at the end point of the reaction. (1 Mk)
- 7. Calculate the concentration of the carboxylic acid C (assuming that the volume ratio is the same as the mole ratio). (2 Mks)

8. Hence calculate the molar enthalpy of neutralization between acid C and solution A using the expression.

MxSHCxDT

Where
$$M = mass of solution$$

S H C = 4.2 J/g/ $^{\circ}$ C

D T = Highest temperature change. Assume that the density of the solution is 1 g/cm^3 .

(4 Mks)

Question 2

You are provided with solid N. Carry out the tests below. Write your observations and inferences in the spaces provided.

(a) Heat about one third of solid N in a clean dry test – tube.

Test the gases produced with both blue and red litmus papers.

Observations	Inferences
(2 Mks)	(1 Mk)

- b. Using a boiling tube, dissolve the rest of solid N in about 10 cm³ of distilled water and use the solution for the tests below.
- (i) To about 2 cm³ of the solutions, add aqueous ammonia drop wise until in excess.

Observations	Inferences
•	
(1 Mk)	(1 Mk)

NAME	CIS C/NO ADM
IVANE	CLSC/NOADM
(ii) To 2 cm ³ of the solution, add about 5cm ³ of	solution P (Aqueous sodium chloride).
Observations	Inferences
(1 Mk)	(1 Mk)
(iii) To 2 cm ³ of solution, add about 4 cm ³ of ac	T. S
Observations	Inferences
0.0001,100010	interences
(1 Mk)	(1 Mk)
-	
(iv) To the mixture obtained in (iii) above, add	
Observations	Inferences
(1 Mk)	(1 Mk)
	(r.ma)
Question 3	
You are provided with liquid M. You are requir i) Dip blue and red litmus paper in liquid M. 	ed to carry out the tests below.
Observations	Inferences

Observations	Inferences	
7 W 0-30.D	(1 Mk)	(1 Mk)

(ii) To 2 cm ³ of potassium dichromate add an ed	qual volume of M in the test tube.
Observations	Inferences
**	
(1 Mk)	(1 Mk)
(iii) Dip a clean rod into liquid M and burn it in	a non-luminous flame of the Bunsen0 burner.
Observations	Inferences
(2 Mks)	(1 Mk)

NAME.......CLS......C/NO......ADM......