4.7 **CHEMISTRY (233)**

4.7.1 Chemistry Paper 1 (233/1)

No.		Responses	Marks
1.	(a)	Number of electrons = number of protons	
		Mass number - Neutrons	
		= 40-21	
		= 19 1 / ₂	(1 mark)
		∴ Electron arrangement = 2.8.8.1 ✓ ½	
		Electron arrangement of sulphur is 2.8.6	
	(b)	$A_2 S^2 \longrightarrow A_2 S^4$	(1 mark)
		112	(2 marks)
2.	(a)	One of the products of the burning candle, water (H ₂ O) ✓ ½	
		reacted / combined with anhydrous Solid B to form hydrated	(1 mark)
	(b)	Solid B. ✓ ½	(1 mark)
	(c)	$CO_{2(g)} + Ca(OH)_{2(aq)} \rightarrow CaCO_{3(s)} + H_2O_{(1)} \checkmark 1$	
			(1 mark)
		To suck the gaseous product from the system. ✓ 1	(3 marks)
_			(½ mark)
3.	(a)(i)	Density of the gas $\sqrt{\frac{1}{2}}$	(72 mark)
		If the gas is lighter than air, downward displacement of air is	
		used. If the gas is denser than air, upward displacement of air is	(½ mark)
		used. ✓ ½	(72 mark)
	(ii)	Solubility in water. ✓ ½	(½ mark)
		If the gas is insoluble in water, it is collected by downward displacement of water. ✓ ½	(,2 2200)
		If the gas is soluble in water, then it is not collected over water.	(½ mark)
	(b)	By use of a syringe / liquefaction and freezing. ✓ 1	(1 mark)
			(3 marks)

No.		Responses			Marks
4.	(a)				
		Element	Cu	О	
		Mass (g)	3.29	0.81 🗸 ½	(½ mark)
		Number of moles	3.29	0.81	_
			64.0	16.0	
			0.051 ✓ ½	0.051 🗸 ½	(2 marks)
		Mole ratio	1	1	
		Empirical formula = C	uO √ ½		
	(b)	Reducing agent 1 ✓ 1			(1 mark)
					(3 marks)
5.	(a) (b)		✓ l lourized / Bromine v ellow to colourless. •	_	(1 mark)
		(ii) Addition reactio	ii. ▼ 1		(1 mark) (1 mark)
					(3 marks)
6.	(a)	(i) F ✓ ½			(½ mark)
		(ii) E ✓ ½			(½ mark)
	(b)	√ ½ √ ½			(1 mark)
		D and G			
	(c)	D and G Amphoteric oxides react	t with both strong ac	ids and alkalis. ✓ 1	(1 mark)

No.		Responses	Marks
7.		Battery Electrodes Molten lead(II) bromide	(2 marks)
	•	Workability	(3 marks)
8.	(a)	In a covalent bond, shared electrons are contributed by both atoms/species while in a dative covalent bond, the shared electrons are from one of the atoms/species ✓ 1	(1 mark)
	(b)	H x N x H	(1 mark)
	(c)	The nitrogen in ammonia contains a lone pair of electrons. ✓1	(3 marks)

No.		Responses	Marks
9.	(a)	Concentrated Sulphuric(VI) acid / H ₂ SO ₄ (l) ✓ 1	(1 mark)
	(b)	Sulphur(IV) Oxide /SO₂ ✓ 1	(1 mark)
	(c)	$\left[\operatorname{Cu(NH_3)_4}\right]^{2+} \checkmark 1$	(1 mark)
			(3 marks)
10.	(a)	$3Cl2(g) + 6NaOH(aq) \rightarrow NaClO3(aq) + 5NaCl(aq) + 3H2O(l) \checkmark 1$	(1 mark)
	(c)	Fractional crystallization. ✓ 1	(1 mark)
	(c)	- Manufacture of dyes	(1 mark)
		- Bleaching agent	
		- Treatment of sewerages ✓ 1	
		- Weed killer (herbicides)	(2 1)
		- Oxidizers in fireworks and explosives/matches	(3 marks)
11.	(a)	-effervescence ✓ 1	(2 1)
		- colourless solution formed ✓ ½	(2 marks)
		- brown residue ✓ ½	
	(b)	$Zn^{2+}(aq) + 4OH^{-}(aq) \rightarrow \left[Zn(OH)_{4}\right]^{2-}(aq) \checkmark 1$	(1 mark)
		OR	
		$Zn(OH)_{2}(s) + 2OH^{-}(aq) \longrightarrow [Zn(OH)4]^{2-}(aq)$	
			(3 marks)

No.		Responses	Marks
12.	(a)	 Metals ✓ ½ Ionic radius is smaller than their corresponding atomic radius. ✓ ½ 	(½ mark) (½ mark)
	(b)	(i) I M ✓½ II N ✓½	(½ mark) (½ mark)
		(ii) The more/greater the ionization energy, the less reactive the element; ✓ ½ The less/smaller the ionization energy the more reactive	
		the element. ✓ ½	(1 mark) (3 marks)
13.	(a)	$2\text{Pb}(\text{NO}_3)_2(s)$ Heat $2\text{PbO}(s) + 4\text{NO}_2(g) + \text{O}_2(g) \checkmark 1$	(1 mark)
	(b)	The yellow colour intensifies. ✓ 1 - Decrease in temperature shifts the equilibrium to the right ✓ 1/2	(1 mark)
		leading to formation of more dinitrogen tetroxide since forward reaction is exothermic. \checkmark $^{1}/_{2}$	(1 mark)
			(3 marks)

No.		Responses	Marks
14.	(a)	C 2H ₂ O ₂ (I) 2H ₂ O(I) + O ₂ (g) progress of reaction	(1 mark)
		(i) $\Delta H = A - B \checkmark 1$ (ii) $EA = C - B \checkmark 1$	(1 mark)
	(b)	As shown in the diagram	(3 marks)
15.	(a)	The products from the carbonator are filtered to obtain sodium hydrogen carbonate as the residue $\checkmark \frac{1}{2}$. The residue is then dried $\checkmark \frac{1}{2}$ and heated strongly $\checkmark \frac{1}{2}$ to produce sodium carbonate.	(1½ marks)
	(b)	Calcium carbonate decomposes to form calcium oxide and carbon(IV) oxide ✓ ½. The calcium oxide reacts with the water and ammonium chloride to form calcium chloride. ✓ 1	(1½ marks)
			(3 marks)

No.	Responses		Marks
16.			WIAFKS
	Bonds broken	Bonds formed	
	C-H	C-Br	
	Br – Br	H-Br	
	Energy absorbed (bond	hreaking) - 412 - 102	(1 1)
		05kJ ✓ 1	(1 mark)
	Energy released (bond f	formation) = 276 + 266	
	= -642		(1 mark)
			(1 mark)
	$\Delta H = +605 + -642$		
	$= -37kJ \checkmark 1$		(1 mark)
		OR	(3 marks)
	$\Delta H = \text{Energy of products}$	s + energy of reactants.	
	Energy of reactants (Bond	l breaking)	
	$=(4\times(+412))++193$	C ,	(½ mark)
	=+1841kJ		(½ mark)

No.		Responses	Marks
		Energy of the products (Bond formation)	
		$=(3\times-412)+-276+-366$	(½ mark)
		=-1878kJ	(½ mark)
		Δ H of reaction = $+1841 + -1878 \checkmark \frac{1}{2}$	(½ mark)
		$= -37 \text{kJ} \checkmark \frac{1}{2}$	(½ mark)
			(3 marks)
17.	(a)	CFCs – Chlorofluorocarbons ✓ 1	(1 mark)
	(b)	DDT – Dichlorodiphenyltrichloroethane ✓ 1	(1 mark)
			(2 marks)
18.	(a)	Simple distillation ✓ 1	(1 mark)
	(b)	- The mixture is placed in a separating funnel and allowed to stand. ✓ 1	
		- The two layers are separated by running out the bottom layer	(1 mark)
		until a little of the bottom layer remains. The interphase is	
		then discarded to remain with the top layer in the separating	
		funnel. ✓ 1	(1 mark)
			(3 marks)
19.		$4P(s) + 5O_2(g) \rightarrow 2P_2O_5(g)$	
		OR	
		$2P(s) + 2\frac{1}{2}O_2(g) \rightarrow P_2O_5(g)$	
		No. of moles phosphorus = $\frac{6.2}{31} = 0.2 \checkmark \frac{1}{2}$	(½ mark)
		No. of moles of $P_2O_5 = \frac{1}{2} \times 0.2 = 0.1 \checkmark \frac{1}{2}$	(½ mark)
		RFM of $P_2O_5 = (31 \times 2) + (16 \times 5) = 142 \checkmark \frac{1}{2}$	
		Mass of $P_2O_5 = RFM \times 0.1$	
		$=142\times0.1$	(1 mark)
		$=14.2g \qquad \checkmark \frac{1}{2}$	(2 marks)

No.		Responses			Monle
20.	(a)	CH ₃ CH=CI	H ₂		Marks (1 mark)
	(b)	Heat ✓ 1(te	mperature between 25 e, 60 - 70 atmosphere	50°C – 300°C) es	(1 mark)
	(c)	Addition / Ox	xidation ✓ 1		(1 mark)
21.	(a)	(i) I	DIO 15		(3 marks
		1	INO ₃ and BaO ✓ 1		(1 mark)
		(ii) F	$Pb(NO_3)_2$ and NaCl	/ 1	(1 mark)
22.	(b)	- Evaporate - Allow to c	the mixture to saturate ool and filter, residue	tion; $\checkmark \frac{1}{2}$ is the salt. $\checkmark \frac{1}{2}$	(1 mark) (3 marks)
22.	1	Concential	the element in the reations of the ions he electrode	activity series ✓1	(1 mark)
	(b)	(i) 2H	$f(aq) + 2e^- \rightarrow H_2(g) -$	Cathode ✓ 1	(1 mark)
		(ii) 4OF	$H^{-}(aq) \rightarrow 2H_2O(1) + C$	$O_2(g) + 4e^ Anode \checkmark 1$	(1 mark)
23.					(3 marks)
.3.					
			Reactants	Products	
		Sulphur	-2 ✓ ½	0 ✓ 1/2	(1 mark)
		Chlorine	0 🗸 ½	-1 ✓ ½	(1 mark)
					(2 marks)

No.		Responses	Marks
24.	(a)	$\frac{RSO_2}{RCO_2} = \frac{\sqrt{MCO_2}}{\sqrt{MSO_2}} \qquad ; \frac{tSO_2}{tCO_2} = \frac{\sqrt{MSO_2}}{\sqrt{MCO_2}}$	
		RMM of $SO_2 = 32 + (16 \times 2) = 64$ RMM of $CO_2 = 12 + 32 = 44$	
		$\frac{96}{\text{tCO}_2} = \frac{\sqrt{64}}{\sqrt{44}} \checkmark \frac{1}{2}$	
		$tCO_2 = \sqrt{\frac{96^2 \times 44}{64}}$	(1½ marks)
		$tCO_2 = 79.60s \checkmark \frac{1}{2}$ Reta	
	(b)	$\frac{\text{Rate}_{\text{Ne}}}{\text{Ratex}} = 1.45 = \sqrt{\frac{\text{Mass of X}}{20}} \checkmark \frac{1}{2}$	
		Mass of $X = 2.1025 \times 20 \checkmark \frac{1}{2}$ = 42.05	(1½ marks)
		= 42.0 ✓ ½	(3 marks)
25.	(a)	(i) 4 Moles of $H_2O = 8H \frac{1}{2}$	
		yH + H = 8H	
		yH = 8H - H	
		yH=7H	(1 mark)
		y=7 ½ ✓	(1 mark)
	(b)	(ii) $C_x H_{2x+1} OH$, where x is the number of carbon atoms	
		$\therefore 2x+1=7 \frac{1}{2}\checkmark$	
		2x = 6	(1 mark)
		$X = 3 \frac{1}{2} \checkmark$	

No.	Responses	Marks
	Moles of O is $4H_2O + 3CO_2 = 10$ Oxygen $\checkmark \frac{1}{2}$	
PRABATION AND THE	O + 2xO = 10 O	
	2xO = 10 O	
	2x = 9	
	x = 4.5 9 Oxygen atoms required = 4.5 moles of $O_2 \checkmark \frac{1}{2}$	(1 mark)
	9 Oxygen atoms required – 4.3 moles of $O_2 = 7/2$	(2 marks)
	OR	
	$C_XH_yOH + O_2 \longrightarrow XCO_2 + 4H_2O$	
	But $y = 2x+1$	
	Where x=3	
	y=2x3+1=7	
	2x+1 = 8	
	2x=6	
	. X=3	
	$C_3H_7OH + \frac{9}{2}O_2 \longrightarrow 3CO_2 + 4H_2O$	
	$\therefore \text{ Moles of } O_2 = 4.5$	

No.		Responses	Marks
26.	(a)	Mass number of $X = 228 - 224 = 4$	
		Atomic number of $X = 90 - 88 = 2$	
		X is $\frac{4}{2}$ He $ \alpha $ alpha $\checkmark \frac{1}{2}$	
		$\frac{228}{90} \text{Th} \to \frac{224}{88} \text{Ra} + \frac{4}{2} \text{He} + \gamma \checkmark 1$	(½mark)
	(b)	No. of half-life = $\frac{5.7}{1.9} = 3 \checkmark \frac{1}{2}$	(1 mark)
		If initial mass is X g, after 3 half-lives mass remaining is $\frac{x}{8}$ g	
		✓ 1/ ₂	(½ mark)
	(c)	$\sqrt[4]{\frac{1}{2}}$ $\frac{x}{8} = 1.25$	
		$x = 10.0 \checkmark (\frac{1}{2} \text{mark})$	(½ mark)
		∴ Initial mass = 10.0g	(½ mark)
			(3 marks)
27.	(a)	Polyphenylethene or polystyrene ✓ 1	(1 mark)
	(b)	H H C=C H	(1 mark)
		Monomer	
		Uses of polystyrene ✓ 1	
	(c)	- Manufacture of packaging materials	
		InsulatorsCeiling boards	(1 mark)
		(Any one correct)	(3 marks)

No.		Responses	Marks
28.	(a)	(i) $a_1 = 1 \checkmark 1$	(1 mark)
	(b)	$(ii) a_3 = 8 \checkmark 1$	(1 mark)
		Both elements have a tendency of losing electrons. ✓ 1 (Both form positive ions).	(1 mark) (3 marks)