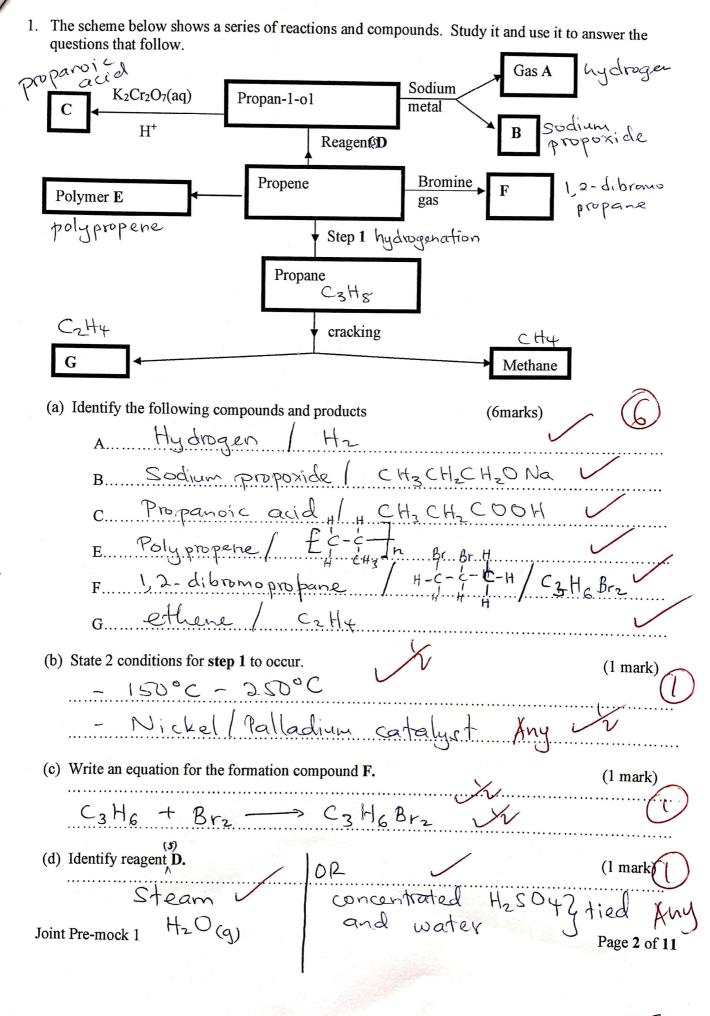
Name	Index No//
School	; Candidates Signature
	Date

233/2 CHEMISTRY Paper 2 (THEORY) September 2021 TIME 2 HOURS Marking Scheme

JOINT PREMOCK 1

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES


- Write your name, school and index number in the spaces provided above.
- Sign and write date of examination in the spaces provided above.
- Answer ALL questions in the spaces provided.
- Mathematical tables and silent electronic calculators may be used.
- All workings MUST be clearly shown where necessary.

Questions	Maximum Score	Candidate's Score
1	14	
2	14	
3	11	
4	14	
5	16	
6	11	
TOTAL	80	
TOTAL	80	

This paper consists of 11 printed pages

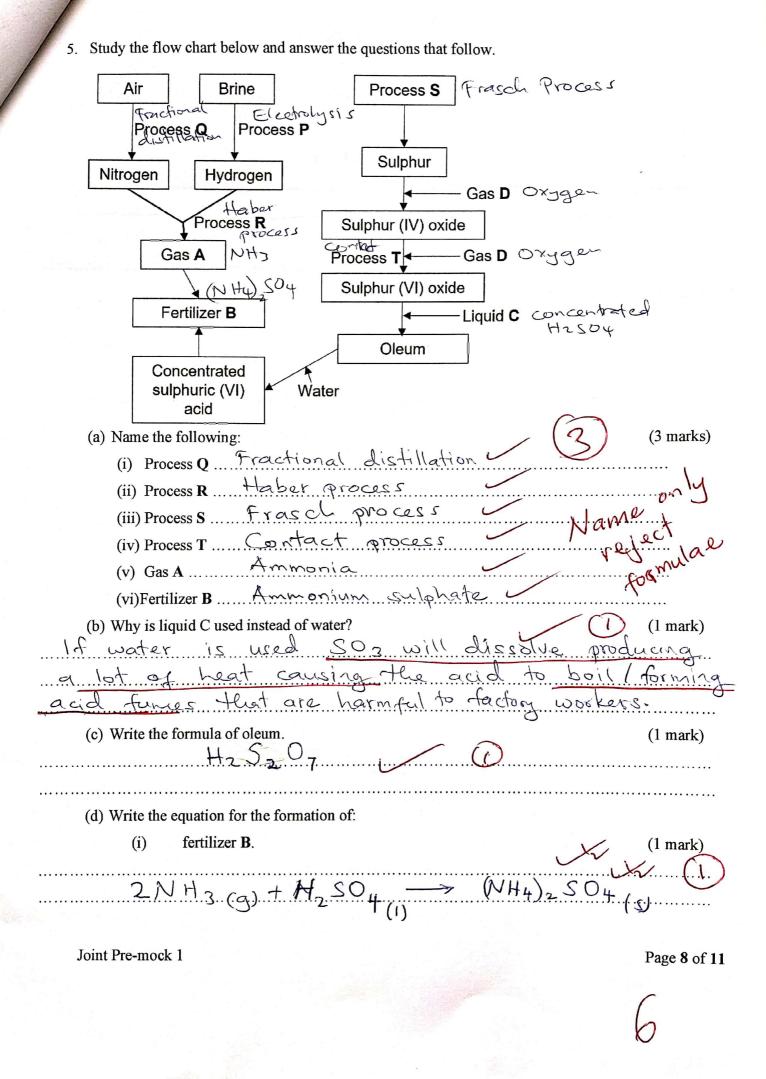
Candidates should check the question paper to ensure that all the

Papers are printed as indicated and no questions are missing

	(e) State one industrial use of methane.	(1 mark)
	Used as a fuel	
	(f) Name the following organic compounds.	(3 marks)
	(i) C ₃ H ₄ Propyre (ii) CH ₃ CH ₂ CH ₂ CH CH ₂ CH ₃	(3)
	ÓH Hexan-3-61	
	(iii) CH2=C-CH3 CH3 2-methylprop-2-ene	
	(g) Draw the structure of a section of polymer E showing three repeat units.	(1 mark).
	$ \begin{bmatrix} H & H & H & H & H \\ C - C - C - C - C - C - C \end{bmatrix} $ $ \begin{bmatrix} C + C + C + C + C + C + C + C + C + C +$	
2.	The table below shows the elements in period 3 of the periodic table. Study it and answe questions that follow.	
	Element Na Mg Al Si P S Cl (a) Write the formulae of two oxides for each of the following: (i) Sodium: Oxide I Na2 O Oxide II Na2 Cl (ii) Sulphur: Oxide I S O Z Oxide II S O Z	(2 marks)
	(ii) Sulphur: Oxide I SO2 Oxide II SO3	
	(b) The products of the reaction between phosphorus and chlorine depend on the condition	ons used.
	Write the equation for the reaction when phosphorus reacts with limited phosphorus. $2P_{(S)} + 3Cl_{2} \longrightarrow 2PCl_{3} (S) + 8Cl_{2} \longrightarrow (S)$	11
	(c) Identify the most electronegative element. Give a reason. Clor chlorine It most readily gains plectrons	(2 marks)
	Joint Pre-mock 1	Page 3 of 11

(d) State and explain the differences in the boiling points of:	
(i) Magnesium oxide and silicon (IV) oxide.	(2 marks)
	phur (IV) oxide
Magnesium oxide hors strong ionic bonds in a gian structure that requires more energy to break than (ii) Sulphur and phosphorus. Oxide which has weak van det waals forces between molecul	t ionic cupher (v)
athraction than (P4) Phosphorus molecules, Dore energy	for carried is required a bonds
heat (1)	
(a) On the diagram, indicate the missing condition. (1 mar	·k)
(b) During the electrolysis, chlorine gas was formed at electrode Y. Identify the:	
(i) Anode (1 mar	k)
(ii) Cathode (1 mar	k)
(c) Write the half equation for the reaction taking place at the:	
(i) Anode. $2C_1 C_1 C_2 2e^- C_1 C_2 C_2 $	k)
(ii) Cathode. $2Na^{+} + 2e^{-} \rightarrow Na_{(S)}$ (1 mar)	k)
Joint Pre-mock 1	Page 4 of 11

3. A student set up the apparatus shown below to prepare and collect dry carbon (IV) oxide gas. Dilute H₂SO₄ acid Water Calcium carbonate Concentrated sulphuric (VI) acid (a) State a correction for three mistakes in the set up above (b) Give two reasons why carbon (IV) oxide is used as a fire extinguisher - It is denser than air hence co (c) The flow chart below is for the manufacture of sodium carbonate by the Solvay process. Use it to answer the questions that follow. NaHCO3 Brine Ammoniacal Tower P Filter Brine Gas Q CO2 Chamber G Solution Heating Gas M NaHCOZ Solid X-NHucl limestone Ammonio -Add water Heat Chamber K Na₂CO₃ caclz (i) Name: (arbon (1V) oxide Chloride Solid X Sodium Joint Pre-mock 1 Page 5 of 11


(ii) Name the product L formed and give one of its uses. (2 marks)	
(ii) Name the product L formed and give one of its uses. Name: Calcium chloride (2 marks)	
Use: - Used in road our facing of weds sodium from rock salt by electrolysis. (iii) Write equations of the reactions in: (2 marks)	-
(iii) Write equations of the reactions in: (2 marks)	
Tower P (Overall equation)	(
Nacl (aq) + NH3 + H2O + CO2 -> NaHCO3 + NH4 Cl (aq)	`
Chamber K	
$2 \text{ NaHCO}_3 \longrightarrow \text{Na2CO}_3 + \text{HaO}_1 + \text{CO}_2 \text{ (3)}$ (v) Name the two raw materials required in the manufacture of sodium carbonate (1 mark)	
(v) Name the two raw materials required in the manufacture of sodium carbonate (1 mark)	
- Ammonia de - Limestone de Any two	
4. Study the flow chart below and answer the questions that follow.	
Cl2 FeCl3 Fe ^{2t}	
gas Fe solid P water P(aq) W Red- brown ppt U	
KMnO ₄	
FeCl2	
HCI(aq) Fe solution R Squeen ppt Squeen ppt S	
water Fe Cl2 Fe	
HCI(g) Fe solid Q water Q(aq) NaOH(aq) green ppt	
heat T	
methylbenzene HCI in Fe Prostien	
methylbenzene no reaction	
(a) Identify:	
(i) Gas C Chlorine C(2 //2 mark) (ii) Solid Q (10) Chloride (Fe C(2 //2 mark))	
(ii) Solid Q (1/2 mark)	
(iii) Solid P Iron (III) chloride / Fe Cl3 (1/2 mark)	
(b) From the flow chart, give two solutions that contain the same metallic ions. (1 mark)	
Solution Q	
Solution R	

Joint Pre-mock 1

Page 6 of 11

(c) Give two precipitates in the flow chart	that are the same and name them. (3 marks)
Precipitates: Green ppt S	and green ppt TV
Name: Iron (1) hydr	oxide (1)
(d) Explain the difference between HCl (g) in water and in methylbenzene as shown in the flow chart.
When HCl (g) dissolves in wat	rer it ionisee to Ht and CIT where es such as tracting with iron.
Ht exhibit acidic properti	es such as reacting with iron.
However when HClan disso	dues in Wethylberrene it does (2)
not ionise and does not	exhibit acidic properties hence, no
Sodium hydroxide s	solution / Ammonia solution ()
(f) Write the equations for:	
(i) The formation of solid P.	(1 mark)
2 Fe (s) + 3 Cl2 (g)	-> 2Fe C13 (g) V
(ii) The formation of solid Q.	(1 mark)
re (s) +2HC (g)	-> Fe C(2 (g) + H2 (g)
(g) In the preparation of a bleaching agent	(sodium hypochlorite), excess chlorine gas was bubbled into
15 litres of cold 2M sodium hydroxide.	
	veen chlorine gas and cold dilute sodium hydroxide. $NaOCI + NaCI + H_2O$ (aq) (aq) (aq)
,	7
(ii) Calculate the mass in kilograms of sod	lium hypochlorite produced. (Na = 23.0, $Cl = 35.5$, $O = 16.0$)
Moles of NaOH useel.	30 X 1 = 15 moles of NaOCI (3 marks)
2 moles -> 1200 cm ³	RFM = 23+16+31-5= 74.5
? — 15000 0m	mass = 15 x 74.5 = 1117.5 q
15000x21=230 moles	1117.5 L 1000 - 1.1175 kg
M.R. NaOH: NaOCI	
2 : 1	(-1215 no)
30 molec: ?	or wong
	units
Joint Pre-mock 1	Page 7 of 11

11/2

(ii) gas A.	(1 mark)
Fe catalyst	
$N_2 + 3H_2 = 2NH_3$	(\cdot)
(9)	
(e) Name the catalyst and give the conditions for:	
(i) Process R.	(3 marks)
Catalyst Finely divided iron	(3)
Conditions 400°C-500°C and 200-500 ortmosp	neres
(ii) Process T.	(3 marks)
(ii) Process T. Catalyst Vanadium (V) oxide / Platinum catalyst	
Conditions 450° 4 and 2-3 atmospheres.	(3)
Conditions	
(1) F 1: 1 - : 1: 16 - : : : : :	(3 marks)
(h) Explain how nitrogen is obtained from air using process Q.	
Air is passed through electrostatic filters to remove	o di di
Dust free air is passed through concentrated sodium	1 hydroxiae
to remove carbongy) oxide. The air is then cooled.	10 -25 6
to remove water vapour. The remaining part of	Tir IS
repeatedly compressed and allowed to expand rapid cool it to -200°C. The liquid air is pass	ed through
a fractional distilation tower where himogen is	collected
as the first praction at -196°C.	
Con Traces de la constante de	2)

6. The following is a procedure that was used to obtain the solubility of a salt **Q** in water at 25°C. Study it and answer the questions that follow.

Salt \mathbf{Q} was dissolved in warm distilled water until no more could dissolve. The mixture was then cooled to 25° C and allowed to settle. A dry evaporating dish and dry watch glass were weighed. Some of the solution was decanted into the dish, covered with the watch glass, and then weighed.

The solution was evaporated to dryness over a small flame. This residue, the dish and the watch glass were weighed. The residue was then heated repeatedly until a constant mass was obtained. The results below were obtained.

Mass of dish + Watch glass = 50.60g Mass of solution + dish + watch glass = 80.6g Mass of residue + dish + watch glass = 62.60g

(a) Use the data to answer the questions that follow.

(4) 000 410 4114 10 412 111	
(i) What is the purpose of the watch glass in such an experiment?	(1 mark)
To prevent loss of solid & spitting of solid.	out
(ii) Why should the heating be continued until a constant mass is obtained?	(1 mark)
To ensure all water is removed.	
(iii) Calculate the mass of the solution.	(1 mark)
80.6 - 50.6 = 30g	
(iv) Calculate the mass of the residue.	(1 mark)
62.6-50.6= 129	
(v) Calculate the mass of the water.	(1 mark)
30 - 12 = 18q 02 mg 80.6 - 62.6 = 18q	<u>(1.)</u> .
80.6-62.6=189	
(vi) Calculate the solubility of salt Q in g per 100g of water at 25°C.	(2 marks)
Solubility = $\frac{12 \times 100}{18} = \frac{66.67 \text{ g}(100)}{18}$	g of water
(2), lise	-/2 R
Joint Pre-mock 1	Page 10 of 11
	7

(b) Hard water has both advantages and disadvantages. Give one advantage and one	
disadvantage of using hard water. (2 marks)	
Advantage - Provides Calcium iors essential for strengthening bo	'n
- Provides Calcium ists essential for energhening bo and feeth beer brewing. - Good for beer brewing. Disadvantage	
Disadvantage	
-Wastes soap - Stains white dother	
- Stains white dother	
- Stains white dother - Deposition of fur in kettles, pipes and boilers	
(c) Using an equation, explain how addition of sodium carbonate is used to remove water	
hardness. When sodium carbonate is added, it precipitate out Ca ^{2t} and Mg ^{2t}	۲
V 7	
either $Ca^{2+}(aq) + CO_{3}^{2}(aq) \longrightarrow (aCO_{3}(s))$ (b) $(aq) + CO_{3}^{2}(aq) \longrightarrow Mg CO_{3}(s)$ $(aq) + CO_{3}^{2}(aq) \longrightarrow Mg CO_{3}(s)$ $(aq) + CO_{3}^{2}(aq) \longrightarrow Mg CO_{3}(s)$	1
4	