4.7.2 Chemistry Paper 2 (233/2)

1.	(a) Molecular formula = $C_n H_{2n+2}$, $n = 11$	
	$= \mathbf{C}_{11}\mathbf{H}_{11\times 2+2}$	
	$= \mathbf{C}_{11}\mathbf{H}_{24} \checkmark 1$	(1 mark)
	(b) (i) Cracking ✓ 1	(1 mark)
	(ii) Catalyst ✓ ½	
	High temperature /heating/400°C-700°C ✓ ½	(1 mark)
	(iii) B – Hexene/Hex-1-ene ✓ 1	(1 mark)
	(c) H H H H	
	(c) H H H H H H H H H H H H H H H H H H H	
	н н-с-нн н	
	H H	(2 marks)
	2-methylbutane ✓1 OR	
	CH₃CHCH₂CH₃	
And the second	ĊH₃	
	OR	
	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	
	Pentane	
	Ħ	
	H H-C-HH H-C-HH H-C-HH H-C-HH	
	$H-C$ $-C$ $-C-H$ $\checkmark 1$	
	н н—ç—н н	
	H 2,2-dimethylpropane ✓1	
	OR	
	CH ₃	
	CH3-C-CH3	
	CH ₃	(2 marks)
- 1		

	(d) $C_5H_{12}(g) + 3O_2(g) \rightarrow 5C(s) + 6H_2O(l)$ OR $\checkmark 1$ $C_5H_{12}(g) + \frac{11}{2}O_2(g) \rightarrow 5CO(g) + 6H_2O(l)$	(1 mark)
	(e) - Decomposition / breakdown of organic matter ✓ 1 in the absence of oxygen. ✓ 1	(2 marks)
	 (f) -Heat a mixture of sodium ethanoate and sodalime ✓ 1 - methane gas is produced and collected over water/ in a syringe/upward delivery ✓ 1 	(2 marks)
		13 marks
2.	 (a) (i) - Dynamic equilibrium refers to a state of balance/reaction in which forward and backward/reverse reactions are taking place at the same rate. ✓ 1 (ii) - The intensity of the orange colour increases. ✓ 1 Addition of H⁺ ions, sulphuric(VI) acid removes OH⁻ ions from the equilibrium mixture hence equilibrium shifts to the left. ✓ 1 	(1 mark) (2 marks)
	(b) (i) Nitrous acid / HNO ₂ / Nitric(III) acid	(1 mark)

(ii) I. Decrease in temperature favours forward (exothermic)	
reaction ✓ 1 hence equilibrium shifts to the right. ✓ 1	(2 marks)
II. Increase in pressure causes more of the products to the	
combine ✓ 1 hence equilibrium shifts to the left ✓ 1	
where we have fewer number of moles.	(2 marks)
(III) No effect/ Catalyst does not affect the position of the	
equilibrium but affects the rate at which the equilibrium	
is attained. ✓ 1	(1 mark)
(c) Rate of the reaction decreases ✓ 1 because the molecules are	
moving slowly due to decrease ✓ 1 in the kinetic energy of the	(2 marks)
molecules hence less effective collisions.	,
(d) No. of moles of $NH_3 = \frac{100}{17} = 5.88 \checkmark 1$	
68kg (4x17) of NH ₃ produces 120kg (4x30) of NO	
100kg of NH ₃ should produce $\frac{100}{68}$ ×120 = 176.5 kg of NO ✓ 1.	
No. of moles of $NO = 5.88$ but the expected mass is	
$176.5g \rightarrow 5.88$ moles.	
$\therefore \% \text{ yield} = \frac{160}{176.5} \times 100 \%$	(3 marks)

	= 90.65%√ 1	
	OR	
	Mole ratio for NH ₃ : NO	
	1:1 ✓ 1/2	
	$17g \rightarrow 30g$	
	$100g \rightarrow ?$	
	$\frac{100}{17} \times 30 = 176.5 \text{g} \checkmark 1$	
	% yield = $\frac{160}{176.5} \times 100\% \checkmark \frac{1}{2}$	
	= 90.65% √ 1	(3 marks)
		(14 marks)
3.	Name Formula	
	(a) (i) Siderite $\checkmark \frac{1}{2}$ FeCO ₃ $\checkmark \frac{1}{2}$	
	(ii) Magnetite $\checkmark \frac{1}{2}$ $Fe_3O_4 \checkmark \frac{1}{2}$	(2 marks)
	Iron pyrites FeS ₂	
	(Any two correct)	
	(b) (i) Temperature in region I is lower than that in region II	
	$(700^{\circ}\text{C}) \checkmark \frac{1}{2}$ because the raw materials are not pre-heated. $\checkmark \frac{1}{2}$	(1 mark)
		4

OR	
Reaction in region I is endothermic while in region II is	(1 mark)
exothermic.	(Timurk)
(ii) I. $C(s) + O_2(g) \rightarrow CO_2(g) \checkmark 1$	(1 mark)
	(Timurk)
OR	
$3CO(g) + Fe_2O_3(s) \longrightarrow 3CO_2(g) + 2Fe(l)$	(2 marks)
	(1 mark)
II. $CaCO_3(g)$ Heat $CaO(s) + CO_2(g) \checkmark 1$	(1 mark)
(iii) Accept any value between 1535°C and 3000°C ✓ 1.	(2 marks)
The temperature keeps the iron in molten state \checkmark 1.	(2 marks)
(iv) Calcium silicate / CaSiO ₃ ✓ 1	(1 mark)
(v) It forms a protective layer over the iron so that the iron does	
not react with the hot air. ✓ 1	(1 mark)
(vi) I Carbon ✓ 1	
II Making manhole covers; ✓ 1	
- Bunsen burner bases;	
- Electric poles;	
- Fire grills.	
- Iron boxes	
- Manufacture of steel	
- Electric arch furnaces	
- Iron pipes	(2 marks)
(Any one correct)	
(vii) - The waste gases ✓ 1 should be used to preheat the air blast	
√ 1.	
- Carbon(IV) oxide is reduced to carbon(II) oxide which	(2 marks)
acts as a reducing agent.	
- Carbon(II) oxide is used as a reducing agent	
	13 marks

4.	(a) (i) Na ₂ O ✓ ½	
	$Na_2O_2 \checkmark \frac{1}{2}$	(1 mark)
	(ii) Cl ₂ O \checkmark ½	(1 mark)
	Cl ₂ O ₇ ✓ ½	
	(b) $2P(s) + 3Cl_2(g) \rightarrow 2PCl_3(l) \checkmark 1$	(1 mark)
	$P_{10}(s) + 5Cl_2(g) \longrightarrow 10PCl_3(g)$	
	(Accept (g) or (l) for PCl ₃	
	(c) Al ✓ 1 – It has the highest number of outermost electrons	(2marks)
	/valency /delocalized electrons per atom. ✓ 1	
	(d) React each of the metals with water. Reactivity increases	
	Na > Mg > Al. Sodium reacts vigorously with cold water ✓ 1,	(3 marks)
	magnesium reacts slowly with cold water $\checkmark \frac{1}{2}$ while aluminium	
	does not react with water. ✓ ½	
	(e) (i) The melting point of chlorine is greater than that of argon. ✓ 1	
	Molecular size of chlorine is greater than that of argon ✓ ½	(2 marks)
	hence chlorine has stronger Van der Waals forces. ✓ ½	
	OR	
	Chlorine is a diatomic molecule with stronger Van der	
	Waals forces compared to argon which is monoatomic.	
	and the second s	
	(ii) Melting point of magnesium oxide is greater than that of	(2 marks)
	silicon(IV)oxide ✓ 2	12 marks

(a)	Concentration - 1.0M solutions;	
	Pressure - 1 atmosphere;	(2 marks)
	Temperature - 25°C/298 K or room temperature.	
	(All the 3 correct for 2 marks)	
	(Any 2 correct for 1 mark)	
	(1 correct for 0 mark)	
(b)	(i) A ₁ – Pb/ lead electrode	
	$A_2 - 1.0M \text{ Pb}^{2+}$ ions / aqueous lead(II) nitrate	
	A ₃ – Ag / Silver electrode	
	$A_4 - 1.0M Ag^+$ ions / aqueous silver nitrate	(2 marks)
	(ii) $Pb(s) + 2Ag^{+}(aq) \rightarrow Pb^{2+}(aq) + 2Ag(s) \checkmark 1$	
	e.m.f. = $E^{\theta}_{\text{Reduced cell}}$ - $E^{\theta}_{\text{oxidised cell}}$	
	$= +0.8 - 0.13 \checkmark \frac{1}{2}$	(2 marks)
	$= +0.93V \qquad \checkmark \frac{1}{2}$	
	(iii) Chloride ions from the salt bridge move into the lead	
	half-cell to balance the charges while the potassium	
	ions move the silver half-cell. Formation of insoluble	(1 mark)
	lead(II) chloride reduces the concentration of the	()
	electrolyte in the lead half-cell hence reduces the	
	efficiency of the salt bridge. ✓ 1	
(c)	- The potassium electrode will react vigorously with water. ✓ 1	(1 mark)
(d)	- Brown colour changes to green ✓ ½ and a grey/black	
	precipitate formed. ✓ ½	
	The E^{θ} value for the reaction	
		(2 marks

(e) (i) KMnO ₄ acts as its own indicator changing from purple to	
colourless. ✓ 1	(1 mark)
(ii) Moles of $Cr_2O_2^{2-} = \frac{18 \times 0.15}{\sqrt{1/2}}$	
1000	
Moles of Fe ²⁺ in 25.0cm ³ = 6×0.0027 $\checkmark \frac{1}{2}$	
= 0.0162	
Moles of Fe ²⁺ in 250cm ³ = $0.0162 \times 10 \checkmark \frac{1}{2}$	
= 0.162 ✓ ½	
Mass of iron = $0.162 \times 56 \checkmark \frac{1}{2}$	
$=9.072g \checkmark \frac{1}{2}$	(3 marks)
	14 marks
(a) (i) When it rains carbon(IV) oxide in air dissolves in the water	
to form acid rain.	
$CO_2 + H_2O \rightarrow H_2CO_3 \checkmark \frac{1}{2}$	
The acid rain reacts with carbonate rocks of magnesium and	
calcium to form soluble magnesium hydrogen carbonate and	
calcium hydrogen carbonate. ✓ ½	(1 mark)
 (ii) At high temperatures calcium hydrogen carbonate decomposes ✓1 to form scales (insoluble calcium carbonate) in boilers that causes poor thermal conductivity ✓1. 	(2 marks)
(b) (i) Permanent hardness. ✓ 1	(1 mark)
 (ii) Aqueous sodium carbonate is added to the water √ 1. Carbonate ions (CO₃²⁻) precipitates calcium ions (Ca²⁺) to form insoluble calcium carbonate which is then filtered off √ 1 	(2 marks)
_	colourless. ✓ 1 (ii) Moles of Cr ₂ O ₇ ²⁻ = \frac{18 \times 0.15}{1000} \times \frac{1}{2} \\ = 0.0027 Moles of Fe ²⁺ in 25.0cm ³ = 6 \times 0.0027 \times \frac{1}{2} \\ = 0.0162 Moles of Fe ²⁺ in 250cm ³ = 0.0162 \times 10 \times \frac{1}{2} \\ = 0.162 \times \frac{1}{2} \\ Mass of iron = 0.162 \times 56 \times \frac{1}{2} \\ = 9.072g \times \frac{1}{2} \\ = 9.072g \times \frac{1}{2} \\ (a) (i) When it rains carbon(IV) oxide in air dissolves in the water to form acid rain. CO ₂ +H ₂ O → H ₂ CO ₃ \(\frac{1}{2}\) The acid rain reacts with carbonate rocks of magnesium and calcium to form soluble magnesium hydrogen carbonate and calcium hydrogen carbonate. \(\frac{1}{2}\) (ii) At high temperatures calcium hydrogen carbonate decomposes \(\frac{1}{2}\) 1 to form scales (insoluble calcium carbonate) in boilers that causes poor thermal conductivity \(\frac{1}{2}\). (b) (i) Permanent hardness. \(\frac{1}{2}\) 1 (ii) Aqueous sodium carbonate is added to the water \(\frac{1}{2}\). Carbonate ions (CO ₃ ²⁻) precipitates calcium ions (Ca ²⁺) to form insoluble calcium carbonate which is then filtered off \(\frac{1}{2}\)

	14 marks
HydrophilicOSO3 ⁻ Na ⁺ ✓ 1	(1 mark)
(d) Hydrophobic – CH ₃ (CH2) ₁₃ CH ₂ - ✓ 1	(1 mark)
√ 1	(1 mark)
(ii) Potassium soaps are soft/mild while sodium soaps are hard.	
C ₁₅ H ₃₁ COOK✓ 1	
(c) (i) $CH_3(CH_2)_{13}CH_2C-OK^+$	(1 mark)
organisms that might be present in water.	
pathogens/germs, ✓ 1 boiling of water kills ✓ 1 micro-	
III. Resins do not remove micro- organisms/bacteria/	(2 marks)
Any correct 1 mark	
II. RSO ₃ ⁻ H ⁺ ✓ 1/RCOO ⁻ H ⁺	(1 mark)
$2RNH_3^+OH^-(s) + NO_3^-(aq) \longrightarrow RNH_3NO_3(s) + OH^-(aq)$	
(iii) I. $RNH_3^+OH^-(s) + Cl^-(aq) \to RNH_3Cl(s) + OH^-(aq)$	(1 mark)