- (c) To displace air from the apparatus. Heated aluminium may react with oxygen to form an impurity. (Al₂O₃) (2 marks)
- (d) Sublimes.

(1 mark)

(e) (i)
$$2AI_{(s)} + 3Cl_{2(g)} \rightarrow 2AlCl_{3(s)}$$

 2×27 $2(27 + 35.5 \times 3)$
 54 = 267
 $54g$ of Al = 267 of AICI₃
Therefore 1.08 produces = $\frac{267 \times 1.08}{54}$
= 5.34(g)

(3 marks)

(ii)
$$\%$$
 yield = $\frac{3.47}{5.34} \times 100$
= 65%

(1 mark)

(f) Replace receiver with a flask in ice-cold water.

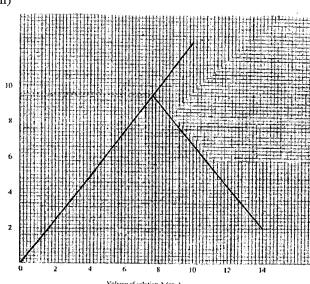
(1 mark)

24.6.3 Chemistry Paper 3 (233/3)

1. (A)

	I	II	43.6	
Final burette reading	21.8	21.6		
Initial burette reading	0.0	0.0	22.0	
Volume of D used (cm ³)	21.8	21.6	21.6	

(3 marks)


(i)
$$\frac{21.6 + 21.6}{2} = 21.6 \text{cm}^3$$
 (1 mark)
(ii) R.F.M of Na₂CO₃= = $\frac{8}{106} = 0.075M$ (1 mark)
(iii) Moles of Na₂CO₃ = $\frac{25 \times 0.075}{1000}$ = 0.001875
Moles of H₂SO₄ = 0.001875
Conc. of H₂SO₄ = $\frac{0.001875}{21.6} \times 1000$ = $0.0868M$ (2 marks)
(iv) 0.0868×10 = $0.868M$ (1 mark)

(B)

Test-tube number	1	2	3	4	5	6
Volume of solution A (cm ³)	2	4	6	8	6	4
Volume of solution C (cm ³)	14	12	10	8	10	12
Initial temperature of solution C (°C)	20.5	20.5	20.5	20.5	20	20
Highest temperature of mixture (°C)	23	25.5	28.0	29.5	26.5	24.5
Change in temperature ΔT	2.5	5.0	7.5	9.0	6.5	4.5

(6 marks)

Volume of solution A (on

(3 marks)

(ii) I
$$\Delta T = 9.5 \pm 0.1^{\circ}C$$

II Maximum volume of $A = 7.6 \text{ cm}^3 \pm 0.1$

(1 mark) (1 mark)

$$=\frac{7.6\times0.868}{1000}$$

= 0.0066 moles

(1 mark)

II Heat evolved

16 x 4.2 x 9.5

= 638.4 joulesMolar Heat = 638.4

 $=\frac{638.4}{0.0066}$

= 96.727272 KJ mol⁻¹

(2 marks)

2. (a)

Observations

Inferences

Gas with a pungent/irritating/choking smell.

Colourless liquid formed on cool part of test tube.

Hydrated salt.

Blue litmus paper turns red.

Acidic gas evolved.

Red litmus paper remains red.

Solid turns reddish brown.

(3 marks)

Observations

- i) Reddish brown solution. PH 1,2,3,
- ii) Brown precipitate insoluble in excess.
- iii) Brown/Black solid formed or solution changes from yellow to brown.
- iv) White Precipitate settles at the bottom of the test tube.

Inferences

Strongly acidic.

(2 marks)

Fe 3+

(2 marks)

Iodide ions oxidised to

Iodine

(2 marks)

SO₄² present.

(2 marks)

3. (a)

Observations

a) Clear blue flame.

b) No separation or forms a solution Two liquids are miscible.

c) No effervescence.

d) Solution changes from orange to green.

Inferences

Saturated low carbon organic compound.

(2 marks)

Mixture is miscible or polar

organic compound.

(1 mark)

Liquid not acidic or absence

of H⁺.
(2 marks)

F is likely to be alcohol OR R

-OH .

(2 marks)