\xrightarrow{T}

CHEMISTRY PP3 MS

Table 1

	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$	24.5	24.5	24.5
Initial burette reading $\left(\mathrm{cm}^{3}\right)$	0.0	0.0	0.0
Volume of acid used $\left(\mathrm{cm}^{3}\right)$	24.5	24.5	24.5

Marking

- Complete table award;
- Decimal consistency;
- Accuracy $\pm 0.1 ; \checkmark$
- School value;

Principles of averaging:
Average volume $=\underline{24.5+24.5+24.5}=24.5 ; \quad(1 / 2 \mathrm{mark})$

$$
=24.5 \mathrm{~cm}^{3} ; \checkmark(1 / 2 \text { mark })
$$

(a) Moles of sodium hydroxide used

Molarity of solution:
Moles $=\underline{\text { Mass } / \text { litre }}$
RMM
$=\frac{4}{40}=0.1 \mathrm{molar}$
If $1000 \mathrm{~cm}^{3} \rightarrow 0.1$ mole
Then $25 \mathrm{~cm}^{3} \rightarrow \frac{25 \times 0.1}{1000}=0.0025$ moles;
(ii) Moles of hydrochloric acid
$\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Mole ratio = 1:1;
Thus moles of acid $=0.0025$ moles;
(iii) Molarity of acid.

Volume of acid reacting $=$ average titre in (a) e.g. $24.5 \mathrm{~cm}^{3}$
If $24.5 \mathrm{~cm}^{3} \rightarrow 0.0025$ moles
Then $1000 \mathrm{~cm}^{3} \rightarrow \frac{1000 \times 0.0025}{24.5}=0.1020$ molar;

Table II
Marking:
Complete table $\checkmark-1$ mark
Decimal consistency $\checkmark-1$ mark
Accuracy $\checkmark-1$ mark
School value \checkmark - 1 mark
Expected titre $=28.3 \mathrm{~cm}^{3}$
(c) Average volume
$\frac{28.3+28.3+28.3}{3}=28.3 \mathrm{~cm}^{3}$
All 3 values within 0.1 of each other and used -1 mark
Only 2 within 0.1 of each other and used $-1 / 2$ mark Inconsistent value used - 0 mark
(d) Answer in (b) (iii) x average volume

1000
Example:
Molarity of the acid calculated in (b) (iii) $=0.102$ molar.

Thus $1000 \mathrm{~cm}^{3} \rightarrow 0.102$ moles
$28.3 \mathrm{~cm}^{3} \rightarrow \frac{28.3 \times 0.102}{1000}=0.0028866$ moles;
(e) (i) Moles of carbonate that reacted:

Using mole ratio, 2 moles of acid reacts with 1 mole of carbonate
Thus moles of carbonate reacting $=\frac{\text { answer in (d) x } 1}{2}$
Example:
2 moles of acid $\rightarrow 1$ mole of carbonate
Thus 0.0028866 moles of acid $\rightarrow \underline{0.0028866 \times 1}$

$$
=0.0014433 \text { moles; }
$$

(ii) Molarity of carbonate
$25 \mathrm{~cm}^{3}$ of carbonate $\rightarrow 0.0014433$
Then $1000 \mathrm{~cm}^{3} \rightarrow \frac{1000 \times 0.001443}{25}=0.057732$ molar
(f) Mass of the salt mixture in gdm-3
$250 \mathrm{~cm}^{3} \rightarrow 2.5 \mathrm{~g}$
$1000 \mathrm{~cm}^{3} \rightarrow \underline{1000 \times 2.5}=10 \mathrm{~g}$;

$$
250
$$

(g) Percentage of XCl in the mixture

Mass of $\mathrm{X}_{2} \mathrm{CO}_{3}$ in 1 litre
Molarity $=0.057732$ molar $/$ answer in (e) (ii).
Mass $=0.057732 \times 106=6.119592 \mathrm{~g}$;
Mass of $\mathrm{XCl}=10-6.119592$

$$
=3.880408
$$

Percentage $=\frac{3.880408}{10} \times 100$
= 30.80408\%
Note: Use school based values

Question 2

SOLUTION	$\mathrm{S3}\left(\mathrm{~cm}^{\mathbf{3}}\right)$	Water $\left(\mathrm{cm}^{3}\right)$	Time (s)
A	50	0	20
B	40	10	25
C	30	20	35
D	20	30	53
E	10	40	103

Marking:

- Complete table \checkmark
- Decimal consistency \checkmark
- Trend (increasing time) \checkmark
- School value

Graph Trend:

Marking:

Scale - $1 / 2$ mark
Axes - $1 / 2$ mark
Plotting - 1 mark
Curve - 1mark
(b) As the concentration decreases ,the time increases
(c) To keep the column of solution constant through the experiment \checkmark

Question 3 (a)

	Observations	Inferences
(a)	Colourless gas with a pungent smell; Gas changes moist red litmus paper blue, moist blue litmus paper remains blue	$\mathrm{NH}_{4}{ }^{+}$present;
(b)	Dissolves to form a colourless solution;	- Soluble salt present; Coloured ions absent // $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$, Cu^{2+} absent;
(c) (i)	White precipitate formed	SO_{4}^{2-} present;
(ii)	White precipitate that persists on warming;	$\mathrm{Cl}-\mathrm{absent} ;$
(iii)	- White precipitate that dissolves in excess; - Colourless gas with a pungent smell on warming; Colourless gas changes moist red litmus paper to blue, blue litmus paper remains blue;	Zn^{2+}
(e)	Dissolves to forma colourless solution	$\mathrm{Polar} \mathrm{substance;}_{\mathrm{R}-\mathrm{OH} \text { present; }}$ (i)
(ii)	No effervescence	$\mathrm{R}-\mathrm{COOH}, \mathrm{H}^{+}$, $\mathrm{H}_{3} \mathrm{O}^{+}$absent;
(iii)	Colour of acidified potassium dichromate (VI) changes from orange to green;	$\mathrm{R}-\mathrm{OH}$ present;

