

CHEMISTRY PP3 MS

Table 1

	1	2	3
Final burette reading(cm ³)	24.5	24.5	24.5
Initial burette reading (cm ³)	0.0	0.0	0.0
Volume of acid used (cm ³)	24.5	24.5	24.5

Marking

- Complete table award; ✓
- Decimal consistency; ✓
- Accuracy ± 0.1;✓
- School value; ✓

Principles of averaging:

Average volume =
$$\underline{24.5 + 24.5 + 24.5} = 24.5$$
; \checkmark (½ mark)

$$= 24.5 \text{ cm}^3; \checkmark (\frac{1}{2} \text{ mark})$$

(a) Moles of sodium hydroxide used

Molarity of solution:

Moles = Mass / litre

RMM

= 4 = 0.1 molar

40

If $1000 \text{ cm}^3 \rightarrow 0.1 \text{mole}$

Then 25 cm³
$$\rightarrow \frac{25 \times 0.1}{1000} = 0.0025$$
 moles;

(ii) Moles of hydrochloric acid

 $NaOH_{(aq)} + HCl_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)}$

Mole ratio = 1:1;

Thus moles of acid = 0.0025 moles;

(iii) Molarity of acid.

Volume of acid reacting = average titre in (a) e.g. 24.5 cm³

If $24.5 \text{ cm}^3 \to 0.0025 \text{ moles}$

Then $1000 \text{ cm}^3 \rightarrow 1000 \text{ x } 0.0025 = 0.1020 \text{ molar}$;

Table II

Marking:

Complete table ✓ - 1mark

Decimal consistency ✓- 1 mark

Accuracy ✓ - 1mark

School value ✓- 1mark

Expected titre = 28.3 cm^3

(c) Average volume

$$\frac{28.3 + 28.3 + 28.3}{3} = 28.3 \text{ cm}^3$$

All 3 values within 0.1 of each other and used – 1mark Only 2 within 0.1 of each other and used $-\frac{1}{2}$ mark

Inconsistent value used – 0 mark

(d) Answer in (b) (iii) x average volume

Example:

Molarity of the acid calculated in (b) (iii) = 0.102 molar.

Thus
$$1000 \text{ cm}^3 \rightarrow 0.102 \text{ moles}$$

 $28.3 \text{ cm}^3 \rightarrow \underline{28.3 \times 0.102} = 0.0028866 \text{ moles};$
 1000

(e) (i) Moles of carbonate that reacted:

Using mole ratio, 2 moles of acid reacts with 1 mole of carbonate

Thus moles of carbonate reacting = $\underline{\text{answer in (d) x 1}}$

Example:

2 moles of acid \rightarrow 1 mole of carbonate

Thus 0.0028866 moles of acid $\rightarrow 0.0028866$ x 1

= 0.0014433 moles:

(ii) Molarity of carbonate

 $25 \text{ cm}^3 \text{ of carbonate} \rightarrow 0.0014433$

Then
$$1000 \text{ cm}^3 \rightarrow \frac{1000 \text{ x } 0.001443}{25} = 0.057732 \text{ molar}$$

(f) Mass of the salt mixture in gdm-3

$$250 \text{ cm}^3 \rightarrow 2.5 \text{g}$$

250 cm³ → 2.5g
1000 cm³ →
$$\frac{1000 \times 2.5}{250}$$
 = 10g;

(g) Percentage of XCl in the mixture

Mass of X₂CO₃ in 1 litre

Molarity = 0.057732 molar / answer in (e) (ii).

Mass = $0.057732 \times 106 = 6.119592g$;

Mass of XCl = 10 - 6.119592

= 3.880408;

Percentage = 3.880408×100

10

=30.80408%

Note: Use school based values.

Question 2

SOLUTION	S3 (cm²)	Water (cm²)	Time (s)
A	50	0	20
В	40	10	25
С	30	20	35
D	20	30	53
E	10	40	103

Marking:

- Complete table✓
- Decimal consistency ✓
- Trend (increasing time) ✓
- School value ✓

Graph Trend:

Marking:

Scale – ½ mark

Axes – ½ mark

Plotting – 1mark

Curve – 1mark

(b) As the concentration decreases ,the time increases \checkmark

(c) To keep the column of solution constant through the experiment \checkmark

Question 3 (a)

	Observations	Inferences
(a)	Colourless gas with a	NH ₄ ⁺ present;
	pungent smell;	
	Gas changes moist red litmus	
	paper blue, moist blue litmus	
	paper remains blue	
(b)	Dissolves to form a	- Soluble salt
	colourless solution;	present;
		Coloured ions
		absent // Fe^{2+} , Fe^{3+} ,
		Cu ²⁺ absent;
(c)	White precipitate formed	SO ₄ ² - present;
(i)		
(ii)	White precipitate that	Cl- absent;
	persists on warming;	
(iii)	- White precipitate that	Zn^{2+}
	dissolves in excess;	
	- Colourless gas with a	NH ₄ ⁺ present;
	pungent smell on warming;	
	Colourless gas changes moist	
	red litmus paper to blue, blue	
	litmus paper remains blue;	
(e)	Dissolves to forma	Polar substance;
(i)	colourless solution	R – OH present;
(ii)	No effervescence	$R - COOH, H^+,$
		H ₃ O ⁺ absent;
(iii)	Colour of acidified	R – OH present;
	potassium dichromate (VI)	
	changes from orange to	
	green;	