4.20 ELECTRICITY (448)

4.20.1 Electricity Paper 1 (448/1)

1	(a)	Insulating materials		
*.	(a)	- Rubber		
		- Plastic		
		- Paper		
		– Taper – Magnesium		
		- Porcellein		
			Any 4 x 1/ - 2	(2 marks)
	(1-)	Advantages	Any 4 x $\frac{1}{2} = 2$	(2 marks)
	(b)	Advantages		
		- Can withstand high temperatures		
		Its impervious to moistureResists action of most chemicals		
		- Has high current rating		
			Any 4 x 1 = 2	(2 marks)
2.	(a)	Lenz's law		
		- The direction of induced Emf is always such that it	-	
		a current opposing the motion or change of flux res	ponsible for	
		inducing that Emf		
			Any 2 x $1 = 2$	(2 marks)
	(b)	Applications of electromagnets		
		- Magnetic relays		
		- Dynamos		
		- Motors		
		- Electric bells		
	<u> </u>		Any $2 \times 1 = 2$	(2 marks)
3.	(a)	National polytechnics		
		- Kabete National Polytechnic	- KTTC	
		- Gusii National Polytechnic	- Sigalagala	
		- Nyeri National Polytechnic	- Rift Valley	
		- Meru National Polytechnic	- Kitale	
		- Mombasa National Polytechnic	- Coast	
		- Kisumu National Polytechnic		
İ			Any 4 x $\frac{1}{2} = 2$	(2 marks)
	(b)	Business opportunities		
	()	 Electrical and electronics shop 		
		Repair and maintenance of electrical equipment		
		Electrical installation		
		- Electrical consultant		
		Accept any other correct		
		-	Any 2 x ½	(1 mark)
4.	(a)	Disposal of waste		
⊸.	(a)	(i) Fluorescent tubes: Crushing and burying		
		(ii) Damaged computer: Recycling of electronic con	mponent	
		(ii) Dumaged compater. Recycling of electronic con	2 x ½	1 mark

	(b)	Fire extinguishers	
	()	i. Carbon dioxide – oil, chemical and electrical fires	1
		ii. Water – used for burning wood, paper and grass	1
		in water asea for burning wood, paper and grass	1
5.	(a)	Brown – 1	
		Black – 0	
		$Red = 10^2$	
		$Gold = \pm 5\%$	
		$=1000\Omega\pm5\%$	(2 marks)
	(b)	Factors that determine the resistance of a material	
	,	Type of material	
		Length of conductor	
		Cross-sectional area	
		Temperature of the material	
		Any $3 \times 1 = 3$	(3 marks)
6.	(a)	Equivalent resistance of R, and B	
	()		(1 mark)
		1 1 1 1 $12B$	(2 22022)
		$\frac{1}{R_2} + \frac{1}{B} = \frac{1}{12} + \frac{1}{B} \Rightarrow \frac{12B}{B+12}$	
		Total circuit resistance	
		Total circuit resistance	(1 mark)
		$\frac{1}{20}$ $\frac{1}{10}$ $\frac{12}{10}$	(1 mark)
		$20 = 10 + \frac{12B}{B + 12}$	
		12B 10(B 12) 12B	
		$10 = \frac{12B}{B+12} \Rightarrow 10(B+12) = 12B$	(1 mark)
		$\Rightarrow 10B + 120 = 12B$	
		$2B=120 B=60\Omega$	
	<i>a</i> >		
	(b)	Total circuit current	
		_ V 20	(1 mark)
		$I = \frac{V}{R} = \frac{20}{20}$	(1 mark)
			(1 mark)
		= 1A	(1 mark)
		Accept any other suitable approach	

7. (a)	Parts of a fluorescent lamp	
	- Starter	
	- Choke	
	- Tube	
	– capacitor	
	Any 4 x ½	(2 marks)
(b)	Marking out tools	
	- Steel rule	
	– Scriber	
	- Dot punch	
	Pair of divider	·
	Engineers square	
	Any 4 x ½	(2 marks)
8. (a)		
i		
		(3 marks)
(b)	Troubleshooting a faults TV set	
(0)		
	 Visual inspection 	
	 Circuit analysis 	
	 Use of service manuals 	
	 Testing using meters 	
	Any 2 x 1	(2 marks)

9. (a)	P-N-P N-P-N	
(b)	1½@ x 2 Applications of semi-conductor diodes	(3 marks)
	RectifiersSwitchesLighting devices	
	 Voltage regulators Surge protectors Accept any other correct answer Any 4 x ½ 	(2 marks)
	 (a) Advantages of digital instruments Easy readability High accuracy Better resolution Automatic polarity and zeroing Accept any correct answer 	
	Any 3 x 1	(3 marks)
	(b) (i) $\frac{N_S}{N_P} = \frac{V_{OUT}}{V_{IN}}$ $12V$	(1 mark)
	$=\frac{12V}{240V}$ $=\frac{1}{20}$	(1 mark)
	(ii) $P_{IN} = P_{OUT}$ $240V \times I_{IN} = 120W$ $I_{IN} = 0.5A$	(1 mark) (1 mark) (1 mark)

SECTION B

10. (a)	(i)	Convert 23 ₁₀ to bina	ary			-14		
		$23 \div 2 = 11 \ rem \ 1$						
		$10 \div 2 = 5 \ rem \ 1$						
		$5 \div 2 = 2 \ rem 1$						
		$2 \div 2 = 1 rem 1$						
		$1 \div 2 = 0 \ rem \ 1$						(2 marks)
		hence $2_{10} = 10101$						
	(ii)	11011 ₂ to decimal						
		$11011 = 1 \times 2^4 + 1 \times 2$	$2^3 + 0 \times 2^2$	$+1\times2^{1}$	$+1\times2^{\circ}$			(2 marks)
		=16+8+0+2+1						
		= 27						
(b)	Trutl	n table						
	(i)	NOR gate						
			Input			output		
			A	В		Y		
			0	0	-	1		
			0	1	()		
			1	0)		
			1	1	()		
							4 x 1	(4 marks)
	(ii)	NAND Gate						
				Input		output		
				A	В	Y		
				0	0	1		
				0	1	1		
				1	0	1		
				1	_1	0		_
							4 x 1	4 marks
(c)	- Cou	nters	<u>.</u> .		-			
		isters						
:	- Time	ers				Any	2 x ½	(1 mark)
	- 11me	C18			· · · · · · · · · · · · · · · · · · ·	————	# A / L	

12 (-)	i. Advantages	T			
12. (a)	i. Advantages – Linear scale				
	– Linear scare– High sensitivity				
	Wall shielded from stray magnetic fields				
	 Lower power consumption 				
	Any 2 x 1	2 marks			
	ii. Deflecting device – whereby a mechanical force is produced by				
	the electric current.				
	Controlling device -whereby the value of deflection is	1			
	dependent upon the magnitude of quantity being measured				
	Damping device to prevent oscillation of the moving system				
	and enable the latter to settle quickly	1			
(b)					
(0)	→ First finger				
	flux				
	Thumb /				
	Motion of	3			
	conductor				
	■ Second finger				
	EMF				
	If the first finger of the right hand be pointed in the direction of magnetic flux.				
		1			
	If the thumb be pointed in the direction of motion	1			
	Then the second finger held at right angles to both the thumb and first				
	finger, the second finger represents the direction of EMF	1			
		1			
c.	Let the capacitors be C_1 and C_2				
	In a series circuit $V = V_1 + V_2$				
]		1			
	0 0 0				
	Since $V = \frac{Q}{C}$ then $\frac{Q}{C} = \frac{Q}{C_1} + \frac{Q}{C_2}$	1			
	$C C_1 C_2$				
	Hence				
	<u>.</u>	1			
	$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{C_1 + C_2}{C_1 \times C_2}$	1			
	· -				
	$C_T = \frac{C_1 \times C_2}{C_1 + C_2}$				
	$C_1 + C_2$				

13. (a)	(i) Advantages of trunking	
	Easy to install	
	 Carry more cables than conduits 	
	 Easy to inspect and maintain 	
	Any 2 x 1	(2 marks)
	(ii) Advantages of MCBs	
	- Faulty circuits can be easily identified	
	Supply can be quickly and easily restored when fault has been	
	cleared	
	The overload tripping characteristics are set by the	
	manufacturer	
	Any 2 x 1	(2 marks)
(b)		
	Starter	
		-
	Fluorescent tube	
	electrodes	
	PF capacitor	
:		
	Drawing 6×½=3	
	Choke	
	Labelling 6×½=3	
	POWER SUPPLY	
(c)	- Continuity test - Installation resistance test	
	- Installation resistance test - Earth continuity test	
	- Performance test	
	Any 3 x 1	3 marks
		3 marks

