MATHEMATICS REVISION KIT 2019 PAPER 2

SECTION I (50 MARKS)

Answer all the questions from this section

- 1. Use logarithm tables to evaluate
 - 4 4.562 x 0.38 0.82

Correct to 3 significant figures

- 2. Simplify the expression: (3x 2y)(2x + 3y)-5xyHence factorize your answer
- Make y the subject of the formula in

$$a = \sqrt{\frac{cy}{b+y}}$$

- The first three consecutive terms of a geometric progression are:
 - 2, x and 8. Find the value of x
- 5. Given that the matrix $M = \begin{bmatrix} a & 0 \\ 5 & h \end{bmatrix}$
 - (a) Determine M²
 - (b) If $M^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ determine the possible pairs of values of a and b
- 6. If (x+y): (x-y) find the ratio x:y
- 7. There are two boxes labeled A and B on a table. Box A contains 5 red balls and 3 white balls, while box B contains 2 red balls and 6 white balls. A box is chosen at a random and two balls are drawn from it, one after the other without replacement. Find the probability that the two balls chosen are of different colours (3 Marks)
- 8. A water tank has a capacity of 50 litres. A similar model tank has a capacity of 0.25 litres. If the larger tank has a height of 10cm. Calculate the height of the model tank, to the nearest cm. (3 Marks)
- Solve for x in
 - $9^x + 3^{2x} 3 = 51$
- 10. Without using a calculator or mathematical tables, express $\frac{\sqrt{3}}{1-\sin 60^0}$ in surd form and rationalize the denominator (3 Marks)
- 11. The figure shows a circle centre O. The line AB = 14cm is a tangent to the circle such that OA = OB and $\angle OAB = 120^{\circ}$.

Calculate to one decimal place

- (a) The radius of the circle
- (b) The total of the shaded parts
- 12. Calculate the value of (2x + 3)dx
- 13. Three quantities; P, Q and R are such that P varies directly as the square of Q and inversely as the square root of R. If P = 6 when Q = R and R = 25. Find the value of P when Q = 15 and R = 81. (3 Marks)
- 14. A tea blender buys two grades of tea at Sh. 60 and Sh. 80 per packet. Find the ratio in which she should mix them so that by selling the mixture at Sh. 90, a profit of 20% is realized. (3 Marks)
- 15. (a) Expand:
 - $(2 + x)^5$ up to the term containing x^3
 - (c) Use the expansion in (a) above to the find the approximate value of (1.99)5 correct to three decimal places.
 - (2 Marks) (3 Marks)

(2 Marks)

(2 Marks)

(2 Marks) (3 Marks)

(4 Marks)

(2 Marks)

(1 Mark)

(2 Marks)

(2 Marks)

(2 Marks)

(2 Marks)

(3 Marks)

- 16. Obtain the centre and radius of a circle represented by the equation:
 - $x^2 + y^2 + 4x 10y 7 = 0$

(3 Marks)

(3 Marks)

(2 Marks)

(2 Marks)

(4 Marks)

(2 Marks)

(4 Marks)

SECTION II (50 MARKS)

Answer any five questions from this section

17. In the figure below XC is a tangent to the circle ABYC at C and Y is the midpoint of arc BC.

If $\angle BXC = 280$ and $\angle BCA = 2\angle ACX$.

Find, giving reasons for your answer:

- (a) (i) ∠CBA
 - (ii) ∠CBY
 - (iii) ∠BYC
- (b) Given that AX = 10cm and XC = 12cm, calculate the length of BX
- 18. The figure below represents a rectangular based pyramid VABCD. AB = 16cm and AD = 20cm. Point 0 is vertically

Calculate:

- (a) The height, VO, of the pyramid
- (b) The angle between the edge VA and the plane ABCD
- (c) The angle between the planes VAB and ABCD.
- 19. (a) The eleventh term of an arithmetic progression is four times its second term. The sum of the first seven terms of the same progression is 175. (4 Marks)

Find the first term and the common difference of the progression

- (b) Given the series $3+9+15+21+27+\dots$ find the number of the terms that will given a sum of 432 (2 Marks)
- (c) A geometric series is such that its first term is 2. Find the two possible common ratios if the sum of its first three terms is 26
- 20. (a) Complete the table below:

,	gompiete me	table beloiii						
	X	-30	0	30	60	90	120	150
	$Sin(x+30)^{0}$	0		1.7			1.5	7
	$\sqrt{3}$ Cos x^0		1.7	1.5		0.0		

(b) On the grid provided, using the same scale and axes, draw a graph of:

 $y = 2 \sin (x + 30)^0$ and $y = \sqrt{3} \cos x$ for $-30^0 \le x \le 1500$

(c) Use the graph drawn in (b) above to determine the values of x for which

(i) $2 \sin (x + 30)^0 = \sqrt{3} \cos x$

- (d) Find the difference in amplitudes between $y = 2 \sin(x + 300)$ and $y = \sqrt{3} \cos x$
- 21. The points A (1,4), B(-2,0) and C (4,-2) of a triangle are mapped onto A¹(7,4), B¹(x,y) and C¹(10,16) by a transformation $N = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
- (a) (i) Matrix N of the transformation
 - (ii) Coordinates of B1

(b) A^{II}B^{II}C^{II} are the image of A¹B¹C¹ under transformation represented by matrix

$$M = \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$

Write down the co-ordinates of AIIBIICII

(3 Marks)

(5 Marks)

(2 Marks)

(2 Marks)

(4 Marks)

(2 Marks)

A transformatio	n N followe	d by M car	n be renr	esented l	ov a single	e transform	ation K. Det		hematics papers (2 Mark
The table below									(= 1 1011)
Marks	1-10	11-20	21-30	31.40	41-50	1			
No. of candida		13	32	27	3				
Using an assum	ed mean of	25.5, calcı	ılate the ı	mean ma	rk	_			(4 Mark
Estimate the me	dian mark								(3 Mark
Calculate the sta									(3 Mark
The positions of						W) Q(400N	I, 20ºE) and	R (36°S, 30	⁰ W) respective
Find the distance		l miles to	the near	est nm be	etween:				
(i) Ports p and									(3 Mark
(ii) Ports P and									(2 Mark
A ship left port	P on Tuesda	ıy 1430 ho	ours and s	sailed to	port Q at 2	20 knots.			
Calculate:				_					
(i) The local tin	-	=	-	-					(2 Mark
(ii) The day and					0 1/0				(3 Mark
Two quantities				equation;	$Q = KR^n$				•
The table of value				1					
Q 1.2 R 1.58	1.5 2.0 2.25 3.3		3.5 7.86	4.5					
Complete the ta				11.6					(2 Mark
Log Q		and log 1 g	given ber	0.30	0	40			0.65
Log R	1	0.35	,	0.30		68	0.90		0.03
On a grid, draw	a suitable li			ent the re				<u> </u>	(3 Mark
From the graph	determine	the values	of K and	l n.					(3 Mark
Hence write dov									(2 Mark
									S S
									4
									• •

1.	NOLOG	M1		$= \frac{15}{112} + \frac{15}{112} + \frac{12}{112} + \frac{12}{112}$	
	4.562 0.6592			112 112 112 112	
	0.38 1.5798	M1		_ 54 _ 27	
	0.2390	M1		$=\frac{54}{112} \text{ or } \frac{27}{56}$	
	<u>0.82 T. 9138</u>		8.	$\mathbf{v.s.f} = \frac{vol\ of\ model\ tank}{vol\ of\ w.tank} = \frac{0.25l}{50l} = \frac{1}{200}$	M1
	0.325/4			vol of w.tank 50l 200	
	1.2059 X 10 ⁻² 0.0813			_	
	$= 0.012059 \le 20.01206$	A1		L.s.f = $\sqrt[3]{\frac{1}{200}}$	
2.	(3x-2y)(2x+3y) - 5xy	M1		V 200	
	$= 6x^2 + 9xy - 4xy - 6y^2 - 5xy$			$= \sqrt[3]{\frac{1}{200}} = \frac{\text{height of } tank}{\text{height of } w.tank} = \frac{x}{100}$	
	$=6x^2-6y^2$	A1			M1
	$=6(x^2-y^2)$			$\left(\frac{x}{100}\right)^3 = \frac{1}{200}$	
	= (6) (x+y)(x-y)	B1		(100) 200	
3.	$a^2 = \frac{cy}{b+y}$	M1		v2 ¹ 1000000 F000	
				$X3 = \frac{1}{200} \times 1000000 = 5000$	
	$a^2b + a^2y = cy$	M1			
	$a^2y + cy = a^2b$			$X = \sqrt[3]{5000} = 10^3 \sqrt{5}$	
	$y(a^2-c) = -a^2b$	A1			
	$y = \frac{-a}{a^2 - c}$			=10 x 1.7321	
4.	$y = \frac{-a^2b}{a^2-c}$ $\frac{X}{2} = \frac{8}{X}$		1	=17.321	A1
1.	$\frac{1}{2} = \frac{1}{V}$			= 17cm	
	2 A		9.	$(3^2)^x \times 3^{2x} = 54$	M1
	$x^2 = 16$			$3^{2x} + 3^{2x} = 54$	
	X = 14				
5.		M1	1	$2.3^{2x} = 54$	M1
Э.	$M^{2=} \begin{pmatrix} a & 0 \\ 5 & b \end{pmatrix} \begin{pmatrix} a & 0 \\ 5 & b \end{pmatrix}$	I ™1		$3^{2x} = 27$	
	νο <i>ν</i> ν νο <i>ν</i> ν	B1		$3^{2x} = 3^3$	
	$(a^2 0)$			2x = 3	
	$= \begin{pmatrix} a^2 & 0 \\ 5a + 5b & b2 \end{pmatrix}$			$X = \frac{3}{2} = 1.5$	A1
—			40	2 /5(2 /5)	D4
b	$ \begin{pmatrix} a^2 & 0 \\ 5a + 5b & b2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	B1	10	$\frac{2\sqrt{3}(2+\sqrt{3})}{(2-\sqrt{3})-(2+\sqrt{3})}$	B1
	$ 5a + 5b b2' \forall 1'$			$(2-\sqrt{3})-(2+\sqrt{3})$	1 114
	$a^2 = 1$				M1
	$\begin{array}{c} a^{-} = 1 \\ A = +1 \end{array}$			$=4\sqrt{3}+6$	A1
	$A = +1$ And $b^2 = 1$		11	Tan $60 = \frac{7}{10}$	M1
	And $b^- = 1$ $b = +1$	A1	**		1411
		3.4.4		$r = \frac{7}{\tan 60}$	A1
6	(x+y): (x-y) = 8:3	M1	_		
	$\begin{array}{c} X+y=8 \\ Y=8 \end{array} $		b	Area of sector = $\frac{120}{360}$ x $\frac{22}{7x}$	M1
	X= 8-y(i)	7.4		300 72	
	8 - y - y = 3	M1		Area of triangle = $\frac{1}{2}$ x 7x X 2	
	8 - 2y = 3				,
	$2y = \frac{5}{2}$			Shaded area =	A1
	$X = 8 - \frac{5}{2}$		13	pxQ^2	
	l Z	A1		\sqrt{R}	
	$= \frac{11}{2} : \frac{5}{2} = 11.5$				
7	P(ARR)		1	$P = \frac{R.Q2}{\sqrt{R}}$	
'	O S D(ARU)			\sqrt{R}	
	S. F - P(AUR)			$12^{2}R$	
	(WUA)			$6 = \frac{12^2 R}{\sqrt{25}}$	
	% R- P(BRR)				
	λ B p(8 R W)			$R = \frac{6X5}{5} = \frac{5}{5}$	
	ξ' - ο (α(μω)			$R = \frac{6X5}{144} = \frac{5}{24}$ $P = \frac{5 Q^{2}}{2\frac{4}{\sqrt{B}}}$	
	p(ARW)+p(AWR)+p(BRW)+p(BWR)			$P = \frac{3\sqrt{2}}{24\sqrt{R}}$	
	$\begin{bmatrix} p(\Delta W V) + p(\Delta W V) + p(\Delta W V) \\ 1 & 1 & 3 & 5 & 1 & 2 & 6 \end{bmatrix}$	5, 1 6 2,		V II	
	$= (\frac{1}{2} \times \frac{3}{8} \times \frac{3}{7}) + (\frac{1}{2} \times \frac{3}{8} \times \frac{5}{7}) + (\frac{1}{2} \times \frac{2}{8} \times \frac{5}{7})$	$\frac{1}{7} + (\frac{1}{2} \times \frac{1}{8} \times \frac{1}{7})$		$P = \frac{5(15^2)}{24\sqrt{81}} = \frac{5}{24} X 25 = \frac{125}{24} = 5\frac{5}{24}$	

_					n -
14	Let the grades of tea bought be x and y. for sh. 60		b.	$Tan VAC = \frac{vo}{Ao}$	M1
	and sh. Respectively			$VAC = \tan^{-1}\frac{^{27.13}}{^{12.81}} = 64.72^{\circ}$	A 1
	$=\frac{60+80y}{x+y}$ cost of the mixture		C.	12.81	A1
			C.	A:	
	120% = sh. 90 100% =?				
		A1		* 7/1	
	$90 X \frac{100}{120} = \text{sh. 75}$			m (
	60x+80v			2	
	$\frac{60x+80y}{x+y} = 75$			$MV = \sqrt{900 - 64} = 28.91$	
				$MV = \sqrt{900 - 64} = 28.91$ $MO = \frac{1}{2} AD = \frac{1}{2} (20) = 10 \text{ cm}$	M1
	60x + 80y = 75x + 75y	M1		$VMO = \cos^{-1}$	B1
	-15x = 15y	A1		$\frac{10}{28.91} = 69.77^{\circ}$	
	$\frac{x}{y} = \frac{1}{3}$ therefore ratio of x:y = 1:3			28.91	
15.	a) $(2+x)^5 = 2^5x \ 0 + 5 \cdot 2^4x^1 + 10 \cdot 2^3x^2 + 10 \cdot 2^2x^3$	M1	19	$T_{11} = a + 10d =$	M1
	$= 32 + 80x + 80x^2 + 40x^3$	A1	a.	$T_2 = a + d$	
b	(2+x) = 1.99	B1		a + 10d = 4(a+d)	
	X - 0.01			a+10d = 4a + 4d	
	$(1.99)^5 = (2 - 0.01)^5$	A1		-3a =-6d a = 2d(i)	M1
	$32+80(-0.01)+80(-0.01)^2+40(-0.01)^3$ 32-0.8+0.008-0.00004			a = 2d(1) $s_7 = \frac{7}{2}[29 + (7-1)d] = 175$	M1 M1
	= 31.20796				
	= 31.20796 = 31.208			$=\frac{7}{2}(4d+6d)=175$	
16	$x^2 + 4x + y^2 - 10y = 7$	M1		$\frac{7}{2}$ x 10d) = 175	
	$x^2 + 4x + \left(\frac{4}{2}\right)^2 + y^2 - 10y + \left(\frac{-10}{2}\right)^2 = 7 + 2^2 + 5^2$			70d = 350	
	$(x+2)^2 + (y-5)^2 = 36 = 6^2$	A1		d=5	
	$(x+2)^2 + (y-5)^2 = 36 = 6^2$ centre is (-2,5)	,		a = 2(s)	
	radius is 6 units	A1		a =10 a=10,d =5.	A1
17	<acx <abc="<" =="" alt="" in="" s="" segments<="" td=""><td>B1</td><td>b.</td><td>D =9-3=6</td><td></td></acx>	B1	b.	D =9-3=6	
	$x + x + 2x + 28 = 180^{\circ} < s$ in a triangle			$Sn = \frac{n}{2}[2x3 + (n-1)6] = 432$	
	4x = 152	B1		n(6+6n-6)=864	
	$x = 38^{\circ}$			$6n^2 = 144$	
ii	<cba 38°<br="" ==""><cba +="" -="" 180="" 2(38)]="" <s="" =="" [38="" in="" td="" triangle<=""><td>B1</td><td></td><td>n=±12</td><td></td></cba></cba>	B1		n=±12	
"	< CDA = 100 - [50 + 2(50)] < S III triangle = 180 - 114	"	24	n = 12 terms	
	=66		21 a.i	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 1 & 4 \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} 7 & 10 \\ 4 & 16 \end{pmatrix} $	
	<BYC = 180 - 66 = 114opp $<$ s. in cyclic	B1	a.ı		
	quadrilateral			A+4b = 7(i) x 4 4a + 16b10 (ii)	
	$<$ CBY $=$ $\frac{180}{2}$ - 114. Base angles of isosceles triangle			4a + 16b10 (II) 4a + 16b = 28	
	= 330	L		40. 24-10	
iii	<BYC = 180 – 66op .angles in cyclic quadrilateral.	B1		$\frac{4a - 2b = 10}{18b = 18}$	
	= 114			b = 1 a = 9 - 4 = 3	
b.	$AX. XB = (cx)^2$			a = 9-4 = 3 c+4d = 4 (iii) x 4	
	$10(10 + x) = 12^{2}$ $100+10x = 144$			4c - 2d = 16(iv)	
	100+10x = 144 $10x = 44$			4c + 16d = 16 4c - 2d = 16	
	X = 4.4			20 <i>d</i> =0	
	AB = 4.4 + 10			$egin{array}{c} d = 0 \\ c = 4 \end{array}$	
	= 14.4cm.			$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 4 & o \end{pmatrix} $	
18.	$Ac = \sqrt{20^2 + 16^2}$				
	$=\sqrt{656}$		ii	$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 4 & \rho \end{pmatrix} \begin{pmatrix} -2 \\ 0 \end{pmatrix} = \begin{pmatrix} -6 \\ -8 \end{pmatrix}$	
	= 25.61			\y/ \4 0/\U/\\-8/	
	$A0 = \frac{1}{2}(25.61)$ = 12.81			$B^1 = (-6, -8)$	
	$V0 = \sqrt{30^{2-12.81^2}}$				
	$VO = \sqrt{30^2 \cdot 1207}$ $= 27.13 \text{cm}$				
<u> </u>		<u> </u>	<u> </u>		<u>JI</u>

b.	A1 B1 C1 A11 B11 C11		
	$ \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 7 & -6 & 10 \\ 4 & -8 & 16 \end{pmatrix} = \begin{pmatrix} 10 & 4 & 4 \\ 7 & -6 & 10 \end{pmatrix} $	24	Loq q 0.08 0.18 0.30 0.40 0.54 0.65
	$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & -8 & 16 \end{bmatrix} \begin{bmatrix} -1 & 7 & -6 & 10 \end{bmatrix}$		Log R 0.20 0.35 0.53 0.68 0.90 1.1
	44 (40 F) P44 (4 C) C44 (44C)		
	A1 (10,7) B11(4,-6) C11 (4,10)		
C.	$ \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix} $		
	\1 U / \4 U/ \3 I/ 		
22a	marks m.p Σ d Σd d2 Σd2 cf	20	X -30 0 30 60 90 120 150
224	1-10 5.5 5 -20 -100 400 2000 5		2sin(x- 0 1.0 1.73 2.00 1.73 1.0 0
	11-20 15.5 13 -10 ⁻¹³⁰ 100 1300 18		30)
	21-30 25.5 32 0 0 0 0 50		
	31-40 35.5 27 10 270 100 2700 77 41-50 45.5 3 20 60 400 1200 80		
	80 100 7200		
	$\mathbf{Mean}(\mathbf{x}) = \mathbf{A} + \frac{\sum fd}{\sum f}$		
	$25.5 + \frac{100}{80} = 26.75$		
	$Median = 20.5 + 40 - 18 \times 10 = 27.375$		
	32		
	$M2 = 20.5 + 41 - 18 \times 10 = 27.6875$		
	32		
	(27.275±27.6979		
	$\therefore Median = \frac{(27.375 + 27.6878)}{2} = 27.5312.$		
	$S = \sqrt{\frac{\sum f d2^{-}}{\sum f} \left(\frac{\sum f d}{\sum f}\right)^{2}}$		
	$\int_{-\infty}^{\infty} \sqrt{-\sum_{f} f \left(\sum_{f} f \right)}$		
	7300 (100) 2		
	$= \sqrt{\frac{7200}{80}} \left(\frac{100}{80}\right)^2$		
	$=\sqrt{90-1.5625}$		
	$=\sqrt{88.437s}$		
	=9		
23	20°E	1	
	$A \times .$		
	2000		
	/ / / /		
	86.2		
	R		
	a) i) longitude difference = $20+30=50^{\circ}$		
	$1^0 = 60 \cos 44^0 \text{nm}$		
	50° =?		
	$= 50 \times 60 \cos 44^{\circ} \text{nm}$ = 229.81 = 230nm		
	ii) latitude difference = 40+36= 76		
	$1^0 = 60 \text{nm}$		
	76° = ? 76 X 60 nm		
	4560nm		
	b) i) $1 = 5$ mins $50^{\circ} = ?$		
	$50^{\circ} = ?$ = 4×50		
j			
	= 200mins = 3hrs, 20mins		
	Time at $0 = 1430 + 3$ hrs 20 mins $= 1750$ hrs		
	Time at Q = $1430 + 3$ hrs 20 mins = 1750 hrs ii) Time taken $\frac{230 nm}{20 nm/h}$		
	Time at Q = $1430 + 3$ hrs 20 mins = 1750 hrs ii) Time taken $\frac{230 nm}{20 nm/h}$ $\frac{230}{20} = 11 \frac{1}{2}$ hrs		
	Time at Q = $1430 + 3$ hrs 20 mins = 1750 hrs ii) Time taken $\frac{230 nm}{20 nm/h}$ $\frac{230}{20} = 11 \frac{1}{2}$ hrs Time the port arrived at port Q		
	Time at Q = $1430 + 3$ hrs 20 mins = 1750 hrs ii) Time taken $\frac{230 nm}{20 nm/h}$ $\frac{230}{20} = 11 \frac{1}{2}$ hrs		
	Time at Q = $1430 + 3$ hrs 20 mins = 1750 hrs ii) Time taken $\frac{230 nm}{20 nm/h}$ $\frac{230}{20} = 11 \frac{1}{2}$ hrs Time the port arrived at port Q = 1750 hrs + 11 hrs 30 mins		