NAME	INDEX NO.	
SCHOOL	SIGNATURE	
	DATE	

121/2 MATHEMATICS ALT A PAPER 2 TIME: 2¹/₂ HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Write your name and index number in the spaces provided above.
- 2. Sign and write the date of examination in the space provided above.
- 3. This paper consists of TWO sections. Section I and Section II.
- 4. Answer ALL the questions in section I and only FIVE questions from Section II.
- 5. All answers and working must be written on the question paper in the space provided below each question.
- 6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
- 7. Marks may be given for correct working even if the answer is wrong.
- **8.** Non-programmable silent calculators and KNEC mathematical tables may be used except where stated otherwise.
- 9. This paper consists of 16 printed papers.
- **10.** Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

FOR EXAMINER'S USE ONLY

SECT	TION 1	<u>1</u>	
-		•	Г

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL
I																	

SECTION II

17	18	19	20	21	22	23	24	TOTAL

GRAND TOTAL	

SECTION A (50 MARKS)

Answer ALL questions in this section in the spaces provided

1. Use logarithm tables to evaluate the following to four significant figures.

(4 marks)

$4.562^2 \times 0.038$
 6.82×0.35

2. The fifth term of an arithmetic progression is 11 and twenty fifth terms is 51. Find the first term and common difference. (2 marks)

3. Find the quartile deviation of the following data. 8,10,2,7,5,9,6,12,4,6,3,7

(3 marks)

4. A man deposits Sh. 500,000 in an investment which pays 12% per annum interest compounded quarterly. Find how many years it takes for the money to double. (3 marks)

- 5. A triangle ABC whose area is 4cm^2 is mapped onto triangle $A^1B^1C^1$ whose area is 64cm^2 under a transformation matrix $\begin{pmatrix} n & 6 \\ -1 & n+3 \end{pmatrix}$
- a) Calculate the possible values of n

b) Find the image of A(3,4) under the above matrix transformation where n<0

6. a) Expand and simplify $(2 - x)^5$ in ascending powers of x up to and including the term in x^3 (2 marks)

b) Hence approximate the values of $(1.98)^5$ to four significant figures.

(2 marks)

(2 marks)

(2 marks)

7. The velocity (V) of a roller-scatter on a straight road is given by $V=3t^2 + 5t - 8$ m/s where t is time in seconds. Find his acceleration at time t=2 second. (2 marks)

8. Chord QX and YZ intersect externally at Q. The secant WQ =11cm and QX =6cm while ZQ=4cm

a) Calculate the length of chord YZ

b) Use the answer in i) above to find the length of the tangent SQ

9. Solve for θ in the domain $0^{\circ} \le \theta \le 360^{\circ}$ $2\cos 2\theta = -0.7071$

10. Simplify $\frac{3}{\sqrt{5}-2} + \frac{1}{\sqrt{5}}$, leaving the answer in the form. a, $b\sqrt{c}$ where a, b, and c are constants. State their values. (3 marks)

- 11. Three athletes, James David and Geoffrey are in a race. James is twice as likely to win as David while David is thrice as likely to win as Geoffrey. Find the probability that.
- a) Geoffrey wins the race

b) James does not win the race.

12. Given the equation. M = $\left(\frac{2-2t}{t+1}\right)^{\frac{1}{3}}$

Express t in terms of m

15. Solve for x in the equation.

Log 5+2 + log (2x + 10) = log (x-4)

(3 marks)

16. The major arc of a circle subtends on an angle of 240° at the centre of circle. Given that the, length of the arc is 88cm calculate the diameter of the circle, (Take $\pi = \frac{22}{7}$) (2 marks)

BSC

SECTION B (50 MARKS)

Answer only five questions from in this section in the spaces provided

17. The table below shows the ages in years of 60 candidates who vied on a political party for parliamentary elections in a certain country as recorded in a computer program.

	Age in years	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69
	No. of candidates	8	13	19	17	3
a)	Calculate; The mean				ŀ	(2 marks)
b)	The interquartile range of	of the data				(3 marks)
						3
c)	The percentage of candi	dates whose ages	s were 54.5 years a	and below		(2 marks)
d)	The variance and standa	rd deviation of tl	ne distribution usir	ng 44.5 as the wo	rking mean.	(4 marks)

- An aircraft leaves town P(30°S,14°W) and moves directly east to town Q at a speed of 270 knots for 12 hours. Determine;
- a) The distance moved in nautical miles

b) The distance moved in km (take 1nm = 1.853km)

c) The position of town Q

d) The local time at Q if the local time at P is 9.13pm. Give the answer to the nearest minute.

19. a) Complete the table below for the curves $y = 3\cos 2x$ and $y = 2\sin(2x + 30)^{\circ}$

(2 marks)

Х	0	15	30	45	60	75	90	105	120	135	150	165	180
3cos2x	3	2.598	1.5	0	-1.5		-3	-2.598	-1.5	0		2.598	3
2sin(2x+30)°	1		2						-2	-1.732	-1		1

b) On a graph paper, draw on the same axes the graph of $y=3\cos 2x$ and $y=2\sin(2x+30)^{\circ}$ for $0^{\circ} \le x \le 180^{\circ}$ (4 marks)

(Take the scale 1cm for 15° on the x axis and two cm for 1 unit on the y - axis)

- d) Use your graph to:-
- i) Estimate the value of x for which $3\cos 2x 2\sin(2x+30)^\circ = 0$

ii) Estimate the range of values of x for which $3\cos 2x < 2\sin(2x+30)^\circ$

- 20. a) Two blends of tea costing Ksh. 140 and Ksh.160 per kg respectively are mixed in the ratio 2:3 by mass. The mixture is sold at sh.240 per kg.
 - i) Find the percentage profit

(2 marks)

ii) In what ratio should the two blends be mixed to get a mixture that costs sh.148 per kg (2 marks)

b) A quantity P is partly constant and partly varies as the cube of Q. when Q = 2, P = 50 and when Q = 4, P = 330. Find the value of Q when P = 16885

(6 marks)

21. The table below shows the income tax rates for a certain year.

Taxable pay per month Ksh	Tax rate
1 -9680	10%
9681 - 18800	15%
18801 – 27920	20%
27921 - 37040	25%
37040 – and above	30%

That year Mary paid net tax of Ksh.5,512 p.m. Her total monthly taxable allowances amounted to Ksh.15220 and he was entitled to a monthly relief of Ksh. 162. Every month the following deductions were made.

- NHIF Ksh.320
- Union dues Ksh.200
- Co-operative shares Ksh.7500
- a) Calculate Mary's monthly basic salary in Ksh.

(7 marks)

b) Calculate her monthly net salary.

(3 marks)

- 22. Three quantities P, Q and R are such that P varies directly as the square of Q and inversely as the square root of R.
- a) Given that P = 20 when Q = 5 and R = 9. Find P when Q = 7 and R = 25 (4 marks)

b) If Q increased by 20% and R decreased by 36%, find the percentage change in P

(6 marks)

23. In the figure below OAB is a triangle in which $OS = \frac{3}{4} OA$ and AR:RB = 2:1 Lines OR and SB meet at T.

- 24. A particle moves a long a straight line such that its displacement S meters from a given point is $S = t^3 - 5t^2 + 3t + 4$, where t is time in seconds. Find,
- a) The displacement of the particle at t = 5

(2 marks)

b) The velocity of the particle when t=5

c) The values of t when the particle is momentarily at rest.

d) The acceleration of the particle when t = 2

MARKING SCHEME

1.	No	Std form	1.00			
1.	No 4.562	Std form $4.562 \times 10^{\circ}$	log 0.6592			
	4.302	4.302 × 10	× 2			
			1.3184			
	0.038	3.8×10^{-2}	2.5798	÷		
			1.8982			
	6.82	6.82 x 10°	0.8338			
	0.35	3.5	1.5441	F		
			0.3779		M1	✓ multiplication and addition
		$\overline{1}.8982$				
		<u>0.3779</u> -				
		ī.5203 x ½			M1	\checkmark subtraction and division by 2
	2+1.5					
	2					
	1.76				M1	✓ antilog
		7 x 10 ⁻¹				✓ antmog ✓ answer
	0.57	57			A1	• answer
					04	
2	a + (n − 1	•				
	a + 4d =					
	<u>a + 24d =</u>				M1	Forming & solving equation
	-20d =					
	d =					
	a = 11 –	8 = 3				
	a = 3					
	d = 2				A1	\checkmark values of a and d
					02	
3		, 6, 6, 7, 7, 8, 9, 1	10, 12			
	$Q1 = \frac{2+3}{2}$	$\frac{+4+5+6}{5} = 4$				
		5				
		$\frac{+9+10+12}{5} = 8.8$			M1	✓ both Q1 and Q3
	$\frac{8.8-4}{2} = \frac{4}{2}$.8			M1	\checkmark subtraction and division by 2
	= 2.4	-			A1	
					04	
4		r n				
	A = P(1		4.44			
	1000000	$= 500000 \left(1 + \frac{1}{2}\right)$	$\left(\frac{3}{100}\right)^{4n}$		M1	✓ substitution
	$\left(1 + \frac{3}{100}\right)$					
	$(1.03)^{4n} =$	= 2				
	-	$03 = \log 2$			M1	✓ Introduction of log base 10
	$4n = \frac{\log 1}{\log 1}$	2				
	$\frac{4n}{4} = \frac{\log 1}{4}$					
	n = 5.862	z years			A1	✓ answer

5	54.25.64.16		
5	a) A.S.F = $\frac{64}{4} = \frac{16}{1}$		
	n(n + 3) - 6 = 16		
	$n^2 + 3n + 6 = 16$	M1	
	$n^{2} + 3n - 10 = 0$		
	n(n+5) - 2(n+5) = 0		
	(n+5)(n-2) = 0		
	n = 2 or -5	A1	
			b O
	$A = A^1$		
	b) $\begin{pmatrix} -5 & 6 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 9 \\ -11 \end{pmatrix}$	M1	
	· I U	. 1	
	A ¹ (9, -11)	A1	
		04	
6	a) $2^{5}(-x)^{\circ}$, $2^{4}(-x)^{1}$, $2^{3}(-x)^{2}$, $2^{2}(-x)^{3}$	-	
U	a) $2(-x)$, $2(-x)$, $2(-x)$, $2(-x)$ 32, -16x, $8x^2$, $-4x^3$	M1	
	52, -10x, 0x, -4x		
	$32 - 80x + 80x^2 - 40x^3 + \dots$	A1	
	<i>.</i>		
	b) $(2-0.02)^5 = (2-x)^5$		
	-x = 0.02		
	x = 0.02		
	32 - 1.6 + 0.032 - 0.00032	M1	
	= 30.43 4s.f	A1	
	- 50.75 75.1		
		03	
7	$\frac{ds}{dt} = V = 3t2 + 5t - 8$		
		1/1	
	$\frac{dv}{dt} = a = 6t + 5$	M1	
	t = 2		
	a = 6(2) + 5		
	$= 17 \text{ m/s}^2$	A1	
		02	
8	QX = QY		
Ũ	a) $\frac{QX}{QZ} = \frac{QY}{QW}$		
	$\frac{6}{4} = \frac{4+x}{11}$	M1	
	4^{4} 11 16 + 4x = 66		
	$4\mathbf{x} = 50$		
	X = YZ = 12.5 cm	A1	
	b) $\frac{QZ}{QS} = \frac{QS}{QY}$		
	QS QY		
	$QZ.QY = QS^2$		
	$4 \ge 16.5 = x^2$	M1	
	$\sqrt{x^2} = \sqrt{66}$		
	X = QS = 8.124 cm	A1	
		04	
9	$2\cos 2\theta = -0.7071$		
	$\cos 2\theta = -0.35355$		

	$aaa^{-1}(0.2555) + (0.20^{\circ})$	M1	
	$\cos^{-1}(0.3555) = 69.30^{\circ}$	IVI I	✓ acute ∠
	$2\theta = 69.30^{\circ} 1^{\text{st}}$ quadrant		
	Cos is $-ve$ in 2^{nd} and 3^{rd} quadrants		
	$2 \theta = 110.7^{\circ}, 249.3^{\circ}, 470.7^{\circ}, 609.3^{\circ}$	M1	
	$\theta = 55.35^{\circ}, 124.65^{\circ}, 235.35^{\circ}, 304.65^{\circ}$	A1	
		03	
10	$3\sqrt{5} + \sqrt{5} - 2$		
	$\sqrt{5}(\sqrt{5}-2)$		
	$\frac{4\sqrt{5}-2}{5-2\sqrt{5}} = \frac{-2+4\sqrt{5}}{5-2\sqrt{5}}$		
	$\frac{1}{5-2\sqrt{5}} - \frac{1}{5-2\sqrt{5}}$		50
	$\frac{-2+4\sqrt{5}}{5-2\sqrt{5}} \times \frac{5+2\sqrt{5}}{5+2\sqrt{5}}$	N./ 1	
	$5-2\sqrt{5}$ × $5+2\sqrt{5}$	M1	✓ conjugate
	$5(-2+4\sqrt{5})+2\sqrt{5}(-2+4\sqrt{5})$		
	$\frac{5(-2+4\sqrt{5})+2\sqrt{5}(-2+4\sqrt{5})}{5^2-(2\sqrt{5})^2}$		
	$-10+20\sqrt{5}+40-4\sqrt{5}$		
	25-20		
	$=\frac{30+16\sqrt{5}}{5}$		
	$=6+\frac{16}{5}\sqrt{5}$	A1	•
	a = 6		
	$b = \frac{16}{5}$	D 1	\checkmark values of a, b and c
	c = 5	B1	• values of a, b and c
11	Let the probability of Geoffrey winning be x. David		
	winning is 3x and that of James is $2(3x) = 6x$		
	a) P(Geoffrey wins) = $\frac{x}{10x} = \frac{1}{10}$	B1	
	a) $1(000110y wins) = \frac{1}{10x} = \frac{1}{10}$		
	b) P(James losing		
	1 - P(James winning)		
	$1 - \frac{6}{10}$	M1	
	$\frac{4}{10} = \frac{2}{5}$	A1	
	10 5		
	2	03	
12	$(2-2t)^{\frac{1}{3}}^{3}$	M1	Cubing both sides
	$(m)^{3} = \left(\left(\frac{2-2t}{t+1}\right)^{\frac{1}{3}}\right)^{3}$		
	$\frac{m^3}{1} = \frac{2-2t}{t+1}$		
	$m^{3}t + m^{3} = 2 - 2t$		
	$m^3t + 2t = 2 - m^3$	M1	
	$\frac{t(m^3+2)}{(m^3+2)} = \frac{2-m^3}{m^3+2}$		
	$t = \frac{2-m^3}{m^3+2}$		
	m 12	A1	
		03	
13	$\partial y = 2^2 + 12 + 0 = 0$	M1	✓ derivative
1.5			
15	$\frac{\partial y}{\partial x} = 3x^2 - 12x + 9 = 0$ (3x - 9) (x - 1) = 0	1011	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- 2 1				λ / 1	/ 1 f
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						MI	✓ values of x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			+9(1) - 4 = 0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(11, 0)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		At $x = 3$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$y = (3)^3 - 6(3)^2 +$	+9(3) - 4 = -4				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Α1	✓ stationary points
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		_				111	stationary points
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-ve				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(1, 0) is a point of	f an an immun				
$\begin{array}{ c c c c c c c c } \hline \hline \hline \hline ve & 0 & +ve \\ \hline \hline (3, -4) \text{ is a point of minimum} & B1 & \checkmark \text{ classification of points} \\ \hline \hline \hline & 04 & & & & & & & \\ \hline \hline \hline & & & & & & & & &$		_					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$14 \qquad bividing through by 2 \\ x^2 + y^2 - 8x + 4y + 4 = 0 \\ x^2 - 8x + y^2 + 4y = -4 \\ completing the square on x and y parts \\ (x - 4)^2 + (y + 2)^2 = -4 + 16 + 4 \\ (x - 4)^2 + (y + 2)^2 = -4 + 16 + 4 \\ (x - 4)^2 + (y + 2)^2 = 16 \\ Centre (4, -2) \\ Radius = 4 units \qquad A1 \qquad \checkmark \text{ centre and radius}$ $15 \qquad bivide bigg (\frac{5}{100}) = \log(\frac{x-4}{2x+10}) \\ 5(2x + 10) = 100(x - 4) \\ 18x = 90 \\ x = \frac{90}{18} \\ = 5 \qquad A1 \\ \hline \\ 16 \qquad \frac{240}{360} \times 2 \times \frac{22}{7} \times r = 88 \\ \frac{4+494r}{4+99r} = \frac{88}{4190} \\ r = 21.002 \cong 21 \\ D = 2r = 42. \qquad A1 \\ \hline \\ \hline \\ \hline \\ \frac{Age (years)}{2} \frac{x}{x} \frac{d = x - 44.5}{2} \frac{d^2}{x} \frac{f}{x} \frac{f}{x} \frac{fd}{x} \frac{fd^2}{x} \frac{ef}{x} \frac{f}{x} \frac{fd}{x} \frac{fd^2}{x} \frac{ef}{x} \frac{f}{x} \frac{fd}{x} \frac{fd^2}{x} \frac{ef}{x} \frac{f}{x} \frac{f}{x} \frac{fd}{x} \frac{fd^2}{x} \frac{ef}{x} \frac{f}{x} \frac{fd}{x} \frac{fd}$		-ve 0	+ve				
$14 \qquad bividing through by 2 \\ x^2 + y^2 - 8x + 4y + 4 = 0 \\ x^2 - 8x + y^2 + 4y = -4 \\ completing the square on x and y parts \\ (x - 4)^2 + (y + 2)^2 = -4 + 16 + 4 \\ (x - 4)^2 + (y + 2)^2 = -4 + 16 + 4 \\ (x - 4)^2 + (y + 2)^2 = 16 \\ Centre (4, -2) \\ Radius = 4 units \qquad A1 \qquad \checkmark \text{ centre and radius}$ $15 \qquad bivide bigg (\frac{5}{100}) = \log(\frac{x-4}{2x+10}) \\ 5(2x + 10) = 100(x - 4) \\ 18x = 90 \\ x = \frac{90}{18} \\ = 5 \qquad A1 \\ \hline \\ 16 \qquad \frac{240}{360} \times 2 \times \frac{22}{7} \times r = 88 \\ \frac{4+494r}{4+99r} = \frac{88}{4190} \\ r = 21.002 \cong 21 \\ D = 2r = 42. \qquad A1 \\ \hline \\ \hline \\ \hline \\ \frac{Age (years)}{2} \frac{x}{x} \frac{d = x - 44.5}{2} \frac{d^2}{x} \frac{f}{x} \frac{f}{x} \frac{fd}{x} \frac{fd^2}{x} \frac{ef}{x} \frac{f}{x} \frac{fd}{x} \frac{fd^2}{x} \frac{ef}{x} \frac{f}{x} \frac{fd}{x} \frac{fd^2}{x} \frac{ef}{x} \frac{f}{x} \frac{f}{x} \frac{fd}{x} \frac{fd^2}{x} \frac{ef}{x} \frac{f}{x} \frac{fd}{x} \frac{fd}$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(3, -4) is a point	of minimum			B 1	 classification of points
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						04	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	Dividing through	1 by 2				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0 0	•			M1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1411	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				•			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Centre (4, -2) Radius = 4 units A1 \checkmark centre and radius 15 Log $\left(\frac{5}{100}\right) = \log\left(\frac{x-4}{2x+10}\right)$ 5(2x + 10) = 100(x - 4) M1 18x = 90 $x = \frac{90}{18}$ = 5 M1 A1 240 $2 \times \frac{22}{7} \times r = 88$ $\frac{4499r}{4490} = \frac{88}{4.190}$ $r = 21.002 \cong 21$ D = 2r = 42. M1 A1 A1 02 17. Age (years) $\frac{x}{24,5} - 20$ 400 $\frac{13}{20,0} - 100$ $\frac{30}{30} - 39$ $\frac{34.5}{34.5} - 10$ 100 $\frac{13}{13} - 130$ $\frac{1300}{1300} \frac{21}{40,0} - 100$ $\frac{40}{30} - 59$ $\frac{54.5}{54.5} 10$ $\frac{100}{100} 17$ $\frac{170}{170} \frac{1700}{57} \frac{57}{60 - 69} - 64.5 20$ $\frac{400}{20} - 33$ $\frac{3}{60} - 1200$ $\frac{1200}{60}$				4			
Radius = 4 units A1 \checkmark centre and radius 15 $Log\left(\frac{5}{100}\right) = log\left(\frac{x-4}{2x+10}\right)$ M1 5(2x + 10) = 100(x - 4) M1 18x = 90 X = $\frac{90}{18}$ = 5 A1 03 16 $\frac{240}{360} \times 2 \times \frac{22}{7} \times r = 88$ $\frac{4499r}{4499r} = \frac{88}{4.190}$ M1 $r = 21.002 \cong 21$ M1 D = 2r = 42. A1 O2 17. Age (years) x d = x - 44.5 d² f fd fd² cf 20 - 29 24.5 -20 400 8 -160 3200 8 30 - 39 34.5 -10 100 13 -130 1300 21 40 - 49 44.5 0 0 19 0 0 40 50 - 59 64.5 20 400 3 60 1200 60		$(x-4)^2 + (y+2)^2$	$)^2 = 16$			M1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Centre (4, -2)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Radius $= 4$ units				A1	\checkmark centre and radius
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						04	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	. (5)	(x-4)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	$Log\left(\frac{1}{100}\right) = log$	$\left(\frac{1}{2x+10}\right)$			1411	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5(2x + 10) = 100	(x - 4)			M1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		18x = 90				1011	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$x = \frac{90}{100}$					
$16 \begin{array}{c c c c c c c c c c c c c c c c c c c $	1					A 1	
16 $\frac{240}{360} \times 2 \times \frac{22}{7} \times r = 88$ M1 $\frac{4.199r}{4.199} = \frac{88}{4.190}$ $R = 21.002 \cong 21$ A1 D = 2r = 42. A1 02 17. 17. Age (years) x d = x - 44.5 d ² f fd fd ² cf 20 - 29 24.5 -20 400 8 -160 3200 8 30 - 39 34.5 -10 100 13 -130 1300 21 40 - 49 44.5 0 0 19 0 0 40 50 - 59 54.5 10 100 17 170 1700 57 60 - 69 64.5 20 400 3 60 1200 60		= 5				AI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						03	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	$\frac{240}{2}$ \times 2 \times $\frac{22}{2}$ \times $\frac{22}{2}$	- 99			M1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			- 00				
$r = 21.002 \cong 21$ A1 $D = 2r = 42.$ 02 17. Age (years) x $d = x - 44.5$ d^2 f fd fd ² cf 20 - 29 24.5 -20 400 8 -160 3200 8 30 - 39 34.5 -10 100 13 -130 1300 21 40 - 49 44.5 0 0 19 0 0 40 50 - 59 54.5 10 100 17 170 1700 57 60 - 69 64.5 20 400 3 60 1200 60		$\frac{4.190r}{4.100} = \frac{88}{4.100}$					
D = $2r = 42.$ A1 02 17. Age (years) x d = x - 44.5 d² f fd fd² cf 20 - 29 24.5 -20 400 8 -160 3200 8 30 - 39 34.5 -10 100 13 -130 1300 21 40 - 49 44.5 0 0 19 0 0 40 50 - 59 54.5 10 100 17 170 1700 57 60 - 69 64.5 20 400 3 60 1200 60							
Age (years) x $d = x - 44.5$ d^2 f fd fd ² cf 17. 17. Age (years) x $d = x - 44.5$ d^2 f fd fd ² cf 20 - 29 24.5 -20 400 8 -160 3200 8 30 - 39 34.5 -10 100 13 -130 1300 21 40 - 49 44.5 0 0 19 0 0 40 50 - 59 54.5 10 100 17 170 1700 57 60 - 69 64.5 20 400 3 60 1200 60							
Age (years)x $d = x - 44.5$ d^2 ffd fd^2 cf $20 - 29$ 24.5 -20 400 8 -160 3200 8 $30 - 39$ 34.5 -10 100 13 -130 1300 21 $40 - 49$ 44.5 00190040 $50 - 59$ 54.5 10 100 17 170 1700 57 $60 - 69$ 64.5 20 400 3 60 1200 60		D = 2r = 42.					
Age (years)x $d = x - 44.5$ d^2 ffd fd^2 cf $20 - 29$ 24.5 -20 400 8 -160 3200 8 $30 - 39$ 34.5 -10 100 13 -130 1300 21 $40 - 49$ 44.5 00190040 $50 - 59$ 54.5 10 100 17 170 1700 57 $60 - 69$ 64.5 20 400 3 60 1200 60						02	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	Age (years) x	d = x - 44.5	d^2	f	fd	fd ² cf
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
60-69 64.5 20 400 3 60 1200 60							
$\sum f = 60 \sum fd = -60 \sum fd^2 = 7400$	6	60-69 64.5	20	400			
					$\Sigma f = 60$	$\sum fd = -6$	$50 \sum f d^2 = 7400$

	a) Mean $(\bar{x}) = A + \frac{\sum fd}{\sum f}$		
	_)		
	$44.5 + \frac{-60}{60}$	M1	
	44.5 – 1		
	= 43.5	A1	
	b) $Q1 = 29.5 + \left(\frac{15-8}{13}\right) \times 10 = 34.8846$		
	$Q3 = 49.5 + \left(\frac{45 - 40}{17}\right)10 = 52.4412$	M1	✓ Q1 and Q3
	Interquartile range		
	52.4412 = 34.8846 = 17.5566		
	≈ 17.56	A1	
	c) Let P be the number of candidates in the class 50		
	– 59 where the age of 54.5 years lie		
	$49.5 + \frac{P}{17} \times 10 = 54.5$	M1	
	$\frac{p}{17} \ge 10 = 5$		
	$P = \frac{5 \times 17}{10}$		
	= 8.5		
	= 9		
	% of candidates below 54.5		
	$\frac{21+9}{60} \ge 100$		
	= 50%	A1	
	$\sum f d^2 (\sum f d)^2$		
	d) Variance $(S)^2 = \frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2$		
	$\frac{7400}{60} - \left(\frac{-60}{60}\right)^2$	M1	
	123.333 – 1	A1	
	122.333		
	Standard deviation	N/1	
	$\sqrt{S^2} = \sqrt{122.333}$	M1	
	S = 11.06 years	A1	
		10	
18	a) Distance $PQ = S \times T$		
	= 270 x 12 nm	M1	
	= 3240nm	A1	
	b) Distance in km		
	3240 x 1.853 km	M1	
	6003.72	A1	
	a) Lat the angle difference in longitude of \mathbf{P} and \mathbf{Q}		
	c) Let the angle difference in longitude of P and Q		
	be y Distance (in nm) of O from P		
	Distance (in nm) of Q from P = $60y \cos 30 = 3240$ nm	M1	
	$= 60y \cos 30 = 3240$ nm	1111	
	$y^{o} = \frac{3240}{60\cos 30}$		

$= 62.35^{\circ}$ Longitude of Q is given by $62.35^{\circ} - 14^{\circ}$ $= 48.35^{\circ}$	M1	
Position of Q is Q(30°S, 48.35°)	A1	
d) Angle difference in the longitude of P and Q is 62.35° Time difference between P and Q $\frac{62.35}{15}$ 4 hours and 9 minutes Local time at Q = 9.13 p.m 9.13pm + 4 hours 9 minutes = 1.22 am	M1 M1 A1	bb
19. a)	10	

X ^o	0	15	30	45	60	75	90	105	120	135	150	165	180
$3\cos 2x^{\circ}$	3	2.598	1.5	0	-1.5	-2.598	-3	-2.598	-1.5	0	-1.5	2.598	3
$2\sin(2x+30)^{\circ}$	1	1.732	2	1.732	1	0	-1	-1.732	-2	-1.732	1	0	1

B2 for all correct values

B1 for any correct 5 values

Atikaschoo

	140x + 160y 148	1	
	$\frac{140x+160y}{x+y} \times \frac{148}{1}$		
	140x + 160y = 148x + 148y	M1	
	$\frac{12y}{8y} = \frac{8x}{8y}$		
	x : y		
	12 : 8		
	3:2	A1	
	c) $P \propto C + Q^3$		
	$P = C + KQ^3$		
	50 = C + 8K	M1	
		1411	
	$\frac{330 \text{ C} + 64\text{k}}{560}$	MI	
	$\frac{280}{56} = \frac{56k}{56}$	M1	
	k = 5		
	50 = C + 8(5)		
	50 = C + 8(5) 50 = C + 40		
		A1	
	C = 10	M1	
	$16885 = 10 + 5Q^3$	1411	•
	$\frac{16875}{5} = \frac{5Q^3}{5}$		
	$3375 = Q^{3}$		
		A1	
	Q = 15	10	
		10	
21	a) Gross tax = $5512 + 1162 = 6672$	M1	
	1^{st} 9680 $x \frac{10}{100} = 968$		
		M1	
	2^{nd} 9120 $x \frac{15}{100} = 1368$	M1	
	$3^{\rm rd}$ 9120 x $\frac{20}{100}$ = 1824	M1	
	4^{th} 9120 $x \frac{25}{100} = 2280$		
	5^{th} 780 x $\frac{30}{100}$ = 234	M1	
	$\frac{100}{37820}$ $\frac{100}{6674}$		
	<u> </u>		
	Desis salam. 27220 15220	M1	
	Basic salary = $37320 - 15220$		
	= Ksh. 22600	A1	
	b) Net pay		
	Total deductions = $320 + 200 + 7500 + 7500$		
1 1	= 13532	M1	
	10002		
	Net pay = $Gross - deduction$	M1	
	Net pay = $Gross - deduction$	M1	
	Net pay = Gross – deduction = $37820 - 13532$		
	Net pay = $Gross - deduction$	A1	
	Net pay = Gross – deduction = $37820 - 13532$		

	2		
22	a) $P \alpha \frac{Q^2}{\sqrt{R}}$		
	$\mathbf{P} = \frac{kq^2}{\sqrt{R}}$		
	$\sqrt{R} P \qquad 3 \times 20 4$		
	$K = \frac{\sqrt{R} P}{Q^2} = \frac{3 \times 20 4}{\frac{25}{5}}$	M1	
	$=\frac{12}{5}$		
		A1	
	$P = \frac{\frac{12}{5} \times 49}{5}$		
	5	M1	
	$=\frac{117.5}{5}$		
	= 23.52		
		A1	
	b) $Q1 = \frac{120}{100}q = (1.2q)^2$		
	100	M1	
	$= 1.44q^2$		
	$R1 = \frac{64}{100}R = \sqrt{0.64 R}$	M1	
	$= 0.8 \sqrt{R}$	101 1	
	$P1 = \frac{KQ_1}{\sqrt{R_1}} = \frac{1.44 \ KQ^2}{0.8 \ \sqrt{R}}$	M1	
	P1 = 1.8P	1411	
		A1	
	$\frac{0.8P-P}{P} imes 100$	M1	
	$\frac{0.8P}{P} \times 100 \ 0.8 \ \text{x} \ 100$	IVI I	
	$_{P}^{P}$ = 80% Increase		
	= 80% <i>increase</i>	A1	
		10	
23	a) i) $AB = -a + b$	B1	
	ii) OR = OA $+\frac{2}{3}AB$		
	5		
	$= a + \frac{2}{3}(-a + b)$	M1	
	$= a - \frac{2a}{3} + \frac{2b}{3}$		
	$=\frac{a}{3}+\frac{2b}{3}$		
	$=\frac{1}{3}(a+2b)$	A1	
	3		
	iii) $SB = -OS + OB$		
	$-\frac{3}{4}a+b$	B1	
	b) ST = m $\left(-\frac{3}{4}a + b\right)$		
			•
	$=-\frac{3m}{4}a + mb$ (i)	M1	
	Moving from S to T via O;		
	ST = SO + OT		
	But $OT = nOR$;		
	ST is also given by		
	ST = SO + nOR		
1			
	-3 , $(1 , 2 , 1)$		
	$\frac{-3}{4}a + n\left(\frac{1}{3}a + \frac{2}{3}b\right)$		

	2 1 2		
	$\frac{-3}{4}a + \frac{1}{3}na + \frac{2}{3}nb$		
	$= \left(\frac{1}{3}n - \frac{3}{4}\right)a + \frac{2}{3}nb(ii)$	M1	
	Equating (i) and (ii)		
	$\frac{-3}{4}ma + mb = \left(\frac{1}{3}n - \frac{3}{4}\right)a + \frac{2}{3}nb$	M 1	
	Equating coefficients of a and b		
	$=\frac{-3}{4}m=\frac{1}{3}n-\frac{3}{4}$		
	-9m = 4n - 9		_
	4n + 9m = 9(iii)		
	$m = \frac{2}{3}n$		Simultaneous eqns
	2n - 3m = 0(iv)	M1	
	43n + 9m = 9		Attempt to solve simultaneously
	2n - 3m = 0	M1	
	15m = 9		
	$m = \frac{9}{15} = \frac{3}{5}, m = \frac{3}{5}$		
	$\frac{3}{2} \times \frac{2}{3}n = \frac{3}{5} \times \frac{3}{2} \qquad n = \frac{9}{10}$		Both values of m and n
	$\frac{1}{2} \times \frac{1}{3} = \frac{1}{5} \times \frac{1}{2} = \frac{1}{10}$	A1	
24	a) $S = (5)^3 - 5(5)^2 + 3(5) + 4$	M1	
	125 - 125 + 15 + 4		
	= 19m	A1	
	ds 2		
	b) $\frac{ds}{dt} = v = 3t^2 - 10t + 3$	M1	
	$V = 3(5)^2 - 10(5) + 3$		
	= 75 - 50 + 3	A 1	
	= 28m/s	A1	
	ds		
	c) $\frac{ds}{dt} = 0$		
	$3t^2 - 10t + 3 = 0$	M 1	
	t(3t - 1) - 3(3t - 1) = 0		
	(t-3)(3t-1) = 0	M1	
	$t = 3$ or $t = \frac{1}{3}$	A1	
	-		
	d) $\frac{dv}{dt} = a = 6t - 10$	M1	
	a = 6(2) - 10	M1 M1	
	a = 0(2) - 10 $a = 2 \text{ m/s}^2$	A1	
 		10	
L	1		