24. $\mathrm{A}\left(50^{\circ} \mathrm{N}, 40^{\circ} \mathrm{W}\right)$ and $\mathrm{B}\left(50^{\circ} \mathrm{N}, 80^{\circ} \mathrm{E}\right)$ lie on the surface of the earth. (take $\left.\mathrm{R}=6370 \mathrm{~km}, \pi=\frac{22}{7}\right)$
(a) Calculate the distance along the small circle between A and B , giving your answer in

i) Nautical miles

(2 marks)
ii) Kilometers
(2 marks)
(b) Find the distance between A and B along a great circle (over North pole) in i) Nautical miles
ii) Kilometres
(2 marks)
b)
\qquad

SIGNATURE
DATE \qquad

INSTRUCTIONS TO CANDIDATE

Write your name and admission number in the spaces provided above. Sign and write the date of examination in the spaces provided.
The paper contains two sections: Section I and II.
4. Answer all questions in section I and only five questions from section II
5. All answers and working must be written on the question paper in the spaces provided below each question. question.
6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
7. Marks may be given for correct working even if the answer is wrong.
8. Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise

FOR EXAMINER'S USE ONLY

SECTION A

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION B

17	18	19	20	21	22	23	24	TOTAL

GRAND
TOTAL

This paper consists of $\mathbf{1 6}$ printed pages.
Candidates should ensure that all pages are printed as indicated and no questions are missing.

SECTION A

Answer all the questions in this section.
23. Use a rule and compasses only for all the constructions in this question.
(a) Construct a triangle ABC such that angle $\mathrm{BAC}=30^{\circ}, \mathrm{AB}=4 \mathrm{~cm}$ and $\mathrm{AC}=6 \mathrm{~cm}$

1. Use logarithms to evaluate
(4 marks)

$$
\sqrt[3]{\frac{0.01369 \times 396.5}{64.11-0.001912}}
$$

b) Construct a circle passing through points A, B and C
(3 marks)
c) On the opposite side of point C , locate point on the circumference such that $\angle \mathrm{ACD}=\angle \mathrm{BCD}$. Measure length CD
(4 marks)
22. The probability that the school team wins a match is 0.6 . The probability that the team looses is 0.3 and the probability that the team ties is 0.1 . The team plays two games.
b) What is the probability that the team
i) Wins two matches?
(2 marks)
4. Make P the subject of the formula

$$
D=\sqrt[3]{\frac{p}{q-p}}
$$

5. Given $\sin \theta=\frac{\sqrt{5}}{3}$, find $\cos (90-\theta)$ without using mathematical tables or calculators. (2 marks)
6. A businessman deposited Ksh 120000 in a bank account which was to earn him interest at the rate of 12% p.a. compounded quarterly. Calculate his total amount after two years to the nearest Kenya shillings
iv) Looses all the matches or ties all the matches
(2 marks)
7. Solve for x given that $2 \sin \mathrm{x}=\operatorname{tax} \mathrm{x}$ for $0^{\circ} \leq x \leq 360^{\circ}$
8. A point T divides line AB externally in the ratio $8: 2$. Given that the position vectors of A and B are $3 i-4 l+k$ and $-1+j-3 k$ respectively. Find the position vector of T in unit vector form (3 marks)
9. (a) Expand and simplify $\left(2-\frac{1}{2} x\right)^{5}$
(b) Use the expansion in part (a) above up to the term in x^{2} to approximate the value of (1.96) ${ }^{5}$ correct to 4 significant figures.
10. The sketch below represents the curve $y=x^{2}+5$ and a straight line $P Q$ which meets the x-axis and y -axis at the points $(-4,0)$ and $(0,8)$ respectively. The line intersects the curve at point P and Q as shown.

a) Find the equation of the line in the form $y=m x+c$
(3 marks)
b) Determine the co-ordinates of P and Q
11. In the triangle PQR below, L and M are points on PQ and QR respectively such that $\mathrm{PL}: \mathrm{LQ}=1: 3$ and $\mathrm{QM}: \mathrm{MR}=1: 2$. PM and RL intersect at x . Given that $\mathrm{PQ}=\vec{b}$ and $\mathrm{PR}=\vec{c}$

a) Express the following vectors in terms of \vec{b} and \vec{c}
i) $\overrightarrow{Q R}$
ii) $\quad \overrightarrow{P M}$
(1 mark)
iii) $\quad \overrightarrow{R L}$
12. y varies partly as the square root of x and partly varies inversely as the cube of x. When $y=2, x=4$ and when $y=3, x=1$. Express y in terms of x.
13. Two grades of coffee A and B are costing sh 80 per kg and 180 per kg respectively are to be mixed in order to produce a blend worth sh 120 per kg . In what ratio should they be mixed? (3 marks)
b) By taking $\overrightarrow{\mathrm{PX}}=\overrightarrow{\mathrm{hpm}}$ and $\overrightarrow{\mathrm{Rx}}=\overrightarrow{\mathrm{kRL}}$ where h and k are constants, find two expression of $\overrightarrow{\mathrm{Px}}$ in terms of $\overrightarrow{\mathrm{h}}, \overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$. Hence determine the values of the constants h and k (6 marks)
14. Given that $A=\left(\begin{array}{cc}3 & -2 \\ 7 & 5\end{array}\right), \mathrm{B}=\left(\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right)$ find
(a) $\mathrm{A}+\mathrm{B}$
(1 mark)
(b) AB^{-1}
(2 marks)
a) Hence or otherwise, determine:
i) The ratio of areas of quadrilateral OABC to quadrilateral $\mathrm{O}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$
ii) The two successive transformations which maps quadrilateral OABC onto quadrilateral $\mathrm{O}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ and their respective matrices (4 marks)
15. In the figure below $S R$ is a tangent to the circle, $P Q R$ is a straight line and $P Q: Q R=1: 1$. Find $P R$ and $Q R$ given that $S R=8 \sqrt{2} \mathrm{~cm}$
(3 marks)

16. The transformation T is represented by the matrix $\left(\begin{array}{cc}2.4 & -1.8 \\ 1.8 & 2.4\end{array}\right)$. T maps quadrilateral OABC whose vertices are $0(0,0), \mathrm{A}(5,0), \mathrm{B}(5,5)$ and $\mathrm{C}(0,5)$ onto quadrilateral $\mathrm{O}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$
a) Determine the coordinates of $\mathrm{O}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ and plot quadrilaterals OABC and $\mathrm{O}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ on the same graph
(3 marks)

																						θ
																						-
																						-
																						-
																						θ
																						-
																						-
																						-
																						-
																						-
																						-
																						-
																						-
																						θ
																						θ
																						θ
																						θ
																						-
																						-
																						-
																						-
																						θ
																						-
																						θ
																						θ
																						-
																						θ
																						\cdots
																						-
																						θ
																						-
																						-
																						\cdots
																						\cdots
																						\cdots

15. Determine the quartile deviation from the data below.
$42,1,12,6,14,20,24$
16. The first three terms of a G.P. are the first, fourth and tenth terms of an A.P. Given that the first term is 6 and that all the terms of the G.P. are different, find the common ratio. (4 marks)

SECTION II (50 Marks)

Answer only FIVE questions in this section in the spaces provided

17. (a) Given that $y=\frac{2}{x^{2}}$ where $\mathrm{x}=0$, complete the table below for the range $-3 \leq x \leq 3$ correct to 2 d.p. x (2 marks)

x	-3	$-2,5$	-2	-1.5	-1	-0.5	0.5	1	1.5	2	2.5	3
y	0.22			0.89	2.00		8.00	2.00				0.22

(b) On the grid provided draw the graph of $y=\frac{2}{x^{2}}$ using the values from the table from part (a) above.
18. A quantity A varies jointly as the cube of y and inversely as the square root of x. If $A=7$ when $y=2$ and $x=25$,
(a) Write an equation convecting A, x and y

1	Solution 64.110000$\frac{-0.001912}{64,108088}$No \log 1.369×10^{-2} 2.1364 3.965×10^{2} 2.5983 0.7347 $\frac{6.411 \times 10^{1}}{2.9277}$ $\underline{\overline{2}} \mathbf{2} 8070$ $=\frac{3}{3}+\frac{1.9277}{3}$ $\begin{aligned} & 4.391 \times 10^{-1} \\ & =0.4391 \end{aligned}$	M1 M1 $\begin{aligned} & \text { M1 } \\ & \frac{\text { A1 }}{4} \end{aligned}$	
2	From $x=y$ then $\begin{aligned} & x^{2}+2 x(x)=25-x^{2} \\ & x^{2}+2 x^{2}+x 2-25=0 \\ & 4 x^{2}-25=0 \\ & (2 x-5)(2 x+5)=0 \end{aligned}$ Either $2 \mathrm{x}-5=0 \longrightarrow 2 \mathrm{x}=5$ $\mathrm{x}=\frac{5}{2}$ $\operatorname{Or}(2 x+5)=0 \longrightarrow 2 x=-5$ $\mathrm{x}=\frac{-5}{2}$ When $\mathrm{x}=\frac{5}{2}, \mathrm{y}=\frac{5}{2}$ And $x=\frac{-5}{2}, y=\frac{-5}{2}$		
3	$\begin{aligned} & \mathrm{AE}=24.5-24.3=0.2 \mathrm{~cm} \\ & \mathrm{RE}=\frac{0.2}{24.3} \\ & \% \text { error }=\frac{0.2}{24.3} x 100 \\ & =0.823 \% \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \frac{\text { A1 }}{3} \end{aligned}$	
4	$\begin{aligned} & \mathrm{d}^{3}=\left(\sqrt[3]{\frac{P}{Q-P}}\right)^{3} \\ & \mathrm{~d}^{3}=\frac{P}{Q-P} \\ & \mathrm{Qd}^{3}-\mathrm{Pd}^{3}=\mathrm{P} \\ & \mathrm{Qd}^{3}=\mathrm{P}+\mathrm{Pd}^{3} \\ & \mathrm{P}=\frac{Q d^{3}}{1+d^{3}} \end{aligned}$	M1 M1 $\frac{\mathrm{A} 1}{3}$	Collecting term with P on one side

5		B1	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
alternatively, using the ratio theorem \\
AT:TB=8: -2
\[
\begin{aligned}
\& \text { OT }=\frac{-2}{6} a+\frac{8}{6} b \\
\& =\frac{-1}{3}\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right)+\frac{4}{3}\left(\begin{array}{c}
-1 \\
1 \\
-3
\end{array}\right) \\
\& =\left(\begin{array}{c}
-1 \\
\frac{4}{3} \\
-\frac{1}{3}
\end{array}\right)+\left(\begin{array}{c}
-\frac{4}{3} \\
\frac{1}{3} \\
-4
\end{array}\right) \\
\& =\left(\begin{array}{c}
-\frac{7}{3} \\
\frac{8}{3} \\
-\frac{13}{3}
\end{array}\right) \\
\& \text { OT }=\left(\frac{-7}{3} i+\frac{8}{3} j-\frac{13}{3} k\right)
\end{aligned}
\]
\end{tabular} \& \& \\
\hline 9 \& \begin{tabular}{l}
\[
\begin{aligned}
\text { a) }=1(2)^{5}(-1 / 2 x) 0+5(2)^{4}(-1 / 2 x)^{1}+10(2)^{3}(-1 / 2 x)^{2}+10 \\
(2)^{2}(-1 / 2 x)^{3}+5(2)^{1}(-1 / 2 x)^{4}+1(2)^{0}(-1 / 2 x)^{5} \\
=32-40 x+2 \times 2-5 \times 3+\frac{5}{8} x^{4}-\frac{1}{32} x^{5}
\end{aligned}
\] \\
b) \((2-1 / 2 \mathrm{x})^{5}=(2-0.04) \xrightarrow{5} \mathrm{x}=0.08\)
\[
\begin{aligned}
\& :(1.96)^{5}=32-40(0.08)^{1}+2(0.08)^{2} \\
\& =28.928 \\
\& =28.934 \mathrm{sf}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
A1 \\
M1
\[
\frac{\mathrm{A} 1}{4}
\]
\end{tabular} \& \\
\hline 10 \& \[
\begin{aligned}
\& \mathrm{y}=\mathrm{a} \sqrt{x}+\frac{b}{x^{3}} \\
\& \text { when } \mathrm{y}=2, \quad 2=2 \mathrm{a}+\frac{b}{64} \\
\& \text { and } \\
\& \text { when } \mathrm{y}=3 \quad 3=\mathrm{a}+\mathrm{b} \\
\& \mathrm{a}=\frac{125}{127} \\
\& : \mathrm{y}=\frac{125}{127} \sqrt{x}+\frac{256}{127 x^{3}}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
\(\frac{\mathrm{B} 1}{4}\)
\end{tabular} \& \\
\hline 11 \& \[
\begin{aligned}
\& \text { Cost of } 1 \mathrm{~kg} \text { of mixture }=\frac{180 x+180 y}{x+y} \\
\& : \operatorname{sh~} 120=\frac{80 x+180 y}{x+y} \\
\& \mathrm{x}: \mathrm{y}=3: 2
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 } \\
\& \frac{\text { A1 }}{3} \\
\& \hline
\end{aligned}
\] \& \\
\hline 12 \& \[
\begin{aligned}
\& \text { Solution } \\
\& 1+\log 3 \mathrm{x}=\mathrm{a} \\
\& \text { Then } \frac{1}{a}+a=2 \\
\& 1+\mathrm{a}^{2}=2 \mathrm{a} \\
\& (\mathrm{a}-1)(\mathrm{a}-1)=0 \\
\& \mathrm{a}=1 \\
\& \log 3 \mathrm{x}=1
\end{aligned}
\] \& M1
M1

A1 \&

\hline
\end{tabular}

	$\mathrm{x}=3$	3	
13	a) $\left(\begin{array}{ll}6 & 3 \\ 8 & 7\end{array}\right)$ b) $\mathrm{AB}^{-1}=\left(\begin{array}{cc}3 & -2 \\ 7 & 5\end{array}\right)\left(\begin{array}{cc}2 & -5 \\ -1 & 3\end{array}\right)$ $=\left(\begin{array}{ll} 8 & -21 \\ 9 & -20 \end{array}\right)$	B1 B1 (for correct inverse) $\frac{\mathrm{B} 1}{3}$	
14	$\begin{aligned} & \mathrm{PRx} \times 1 / 2 \mathrm{PR}=(8 \sqrt{2})^{2} \\ & \mathrm{PR}=\sqrt{256}=16 \mathrm{~cm} \\ & \mathrm{QR}=1 / 2 \times 16=8 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \frac{\text { A1 }}{3} \end{aligned}$	
15	$\begin{aligned} & 1,6,12,14,20,24,42 \\ & \text { Q1 }=6 \\ & \text { Q3=24 } \\ & \text { Quartile deviation }=1 / 2(24-6) \\ & =9 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \frac{\text { A1 }}{3} \\ & \hline \end{aligned}$	
16	$\begin{aligned} & \mathrm{r}=\frac{6+3 d}{6}=\frac{6+9 d}{6+3 d} \\ & \mathrm{~d}=0 \text { or } 2 \\ & 6,6=3 \mathrm{~d}, 6+9 \mathrm{~d} \ldots \ldots \ldots \ldots \ldots . \mathrm{GP} \\ & \text { When } \mathrm{d}=0,6,6,6 \ldots \ldots \ldots \ldots . \\ & \text { and } \\ & \text { when } \mathrm{d}=2,6,12,24 \ldots \ldots \ldots . \\ & ; \text { the common ratio of } \mathrm{GP}=2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \frac{\text { A1 }}{4} \end{aligned}$	

17. a) Missing values in table
$\mathrm{Y}=0.32,0.50,8,0.89,0.50,0.32$
B2 Award B1 if 4 values are correct
B1 Plotting
B1 Scale
B2 Smooth curves
b)

c) $y=\frac{2}{x^{2}}$

$$
\frac{0=\frac{-2}{x^{2}}+x+4}{y=x+4}
$$

M 1
A1
L1 (line must be seen)
B1 (values

	а) $\left(\begin{array}{cc}2.4 & -1.8 \\ 1.8 & 2.4\end{array}\right)\left(\begin{array}{cccc}0 & 5 & 5 & 0 \\ 0 & 0 & 5 & 5\end{array}\right)=\left(\begin{array}{cccc}0 & 12 & 3 & -9 \\ 0 & 9 & 21 & 12\end{array}\right)$ $: 0,(0,0) \mathrm{A} 1(12,9) \mathrm{B} 1(3,21) \mathrm{C} 1(-9.12)$ b) $\begin{aligned} & \text { i) Determine T } \\ & =(2.4 \times 2.4)-(-1.8 \times 1.8)=9 \end{aligned}$ Area scale factor $=\sqrt{9}=3$ $\left(\begin{array}{cc} 2.4 & -1.8 \\ 1.8 & 2.4 \end{array}\right)=3\left(\begin{array}{cc} 0.8 & -0.6 \\ 0.6 & 0.8 \end{array}\right)=\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)\left(\begin{array}{cc} 0.8 & -0.6 \\ 0.6 & 0.8 \end{array}\right)$ Hence $\mathrm{M}=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ represents an enlargement about O with $1 \mathrm{sf}=3$ and $\mathrm{R}\left(\begin{array}{cc} 0.8 & -0.6 \\ 0.6 & 0.8 \end{array}\right)=\left(\begin{array}{cc} \operatorname{Cos} 37^{0} & -\operatorname{Sin} 37^{0} \\ \operatorname{Sin} 37^{0} & \operatorname{Cos} 37^{0} \end{array}\right)$: represents a rotation of 37° about O $\mathrm{N} / \mathrm{B} \operatorname{MR}(\mathrm{T})=\mathrm{RM}(\mathrm{T})$ ie the 2 transformations are cumulative and we can start with either	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
20	a) $\begin{aligned} & \mathrm{QR}=\mathrm{QP}+\mathrm{PR} \\ & -\mathrm{b}+\mathrm{c} \\ & \mathrm{PM}=\mathrm{PG}+\mathrm{QM} \\ & =\mathrm{b}+\frac{1}{3}(c-b) \\ & \frac{2}{3} b+\frac{1}{3} c \end{aligned}$ RL=RP + PL $-c+1 / 4 b$ $1 / 4 \mathrm{~b}-\mathrm{c}$ b) $\begin{aligned} & \mathrm{PX}=\mathrm{h}\left(\frac{2}{3} b+\frac{1}{3} c\right) \\ & \mathrm{RX}=\mathrm{k}\left(\frac{1}{4} b-c\right) \end{aligned}$ $1 / 4 \mathrm{~kb}-\mathrm{kc}$ $\begin{aligned} & \mathrm{PX}=\mathrm{PR}+\mathrm{RX} \\ & =\mathrm{c}+1 / 4 \mathrm{~kb}-\mathrm{kc} \\ & =\mathrm{c}-\mathrm{kc}+1 / 4 \mathrm{~kb} \end{aligned}$		

	$=40-\frac{88}{3}=\frac{120-88}{3}=\frac{32}{3}$		
22	Tree diagram b) What is the probability that the team i) Win two matches? $\mathrm{P}($ Wand W$)=0.6 \times 0.6$ $=0.36$ ii) Either wins all the matches or loses all the matches $\mathrm{P}(\mathrm{WW})$ or $\mathrm{P}(\mathrm{LL})$ $\begin{aligned} & 0.6 \times 0.6+0.3 \times 0.3=0.36+0.09 \\ & =0.45 \end{aligned}$ iii) Wins one match and loses one $\mathrm{P}(\mathrm{W} \& \mathrm{~L})$ or (L\& W) $0.6 \mathrm{X} 0.3+0 . .3 \times 0.6$ $=0.36$ iv) Loses all the matches or ties all the matches $\mathrm{P}(\mathrm{LL})$ or $\mathrm{P}(\mathrm{TT})$ 0.3X0.3 + 0.1X0.1 $=0.1$	B2 M1 A1 M1 A1 M1 A1 M1 A1	
23	a) Angle 60^{0}	B1	

	Angle 30^{0} Triangle b) bisecting $1^{\text {st }}$ side $2^{\text {nd }}$ side Circle drawn c) Bisecting angle ACD Locating point D Drawing bisector Length CD	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
24	Longitude diff is $(80+40)=120^{\circ}$ Length of arc $A B=60 \theta \operatorname{Cos} 50^{\circ}=4628 \mathrm{~nm}$ Length of $\operatorname{arc} \mathrm{AB}=\left(\frac{\theta}{360} 2 \pi R \operatorname{Cos} 50^{\circ}\right) \mathrm{km}$ $=\frac{120}{360} \times 2 x \frac{22}{7} \times 6370 \operatorname{Cos} 50^{0}$ 8579 km b) Find the distance between A and B along a great circle (over north pole) in; i) Nautical miles ii) Kilometers Angle $\mathrm{AOB}=80^{\circ}$ i) Length of arc $A B=60 \times 80=4800 \mathrm{~nm}$ $\begin{aligned} & 1 \mathrm{AB}=\frac{0}{360} 2 \pi R \\ & 1 \mathrm{AB}=\left(\frac{80}{360} \times 2 x \frac{22}{7} \times 6370\right) \mathrm{km} \\ & =8897.78 \mathrm{~km} \end{aligned}$ c) Find the time at A if the local time at B is 12.00 noon difference in longitude is $(80+40)=120^{\circ}$ 1^{0} is 4 min Difference in time is $120 \times 4=480 \mathrm{~min}=8 \mathrm{hrs}$ Local time at A is 8 hrs behind that of B ie 4.00 a .m.		

