PDF Eraser Free

Basic principles of Chemistry PRACTICAL

PDF Eraser Free

Introduction/Rationale

Chemistry is a science.
Chemistry practical all over the world is emphasized to all candidates sitting for a Chemistry paper.
There are about seven main basic universal emphasis for all chemistry candidates sitting for a chemistry paper;
(i)Titration /volumetric analysis
(ii)Thermochemistry(energy changes)
(iii)Chemical kinetic(rates of reaction)
(iv)Qualitative analysis(organic/inorganic)
(v)Solubility and solubility curves
(vi)Flame test
(vii)Physical / general chemistry

(a) Titration/volumetric analysis

Titration is determining the end point of the burette contents that react with fixed (usually 25.0 cm 3 from a pipette) conical flask contents.
As evidence of a titration actually done examining body require the candidate to record their burette readings before and after the titration.
For KCSE candidates burette readings must be recorded in a titration table in the format provided by the Kenya National Examination Council.
As evidence of all titration actually done Kenya National Examination Council require the candidate to record their burette readings before and after the titration to complete the titration table in the format provided.

Sample Titration table format

Final burette reading $(\mathrm{cm} 3)$	24.0	24.0	24.0
Initial burette reading $(\mathrm{cm} 3$	0.0	0.0	0.0
Volume of solution used $(\mathrm{cm} 3)$	24.0	24.0	24.0

Calculate the average volume of solution used

$$
\frac{24.0+24.0+24.0}{3}=\mathbf{2 4 . 0} \mathbf{~ c m 3}
$$

As evidence of understanding the degree of accuracy of burettes ,all readings must be recorded to a decimal point.
As evidence of accuracy in carrying the out the titration, candidates value should be within 0.2 of the school value .

PDF Eraser Free

The school value is the teachers readings presented to the examining body/council based on the concentrations of the solutions s/he presented to her/his candidates. Bonus mark is awarded for averaged reading within 0.1 school value as Final answer. Calculations involved after the titration require candidates thorough practice mastery on the:
(i)relationship among the mole, molar mass, mole ratios, concentration, molarity.
(ii) mathematical application of $1^{\text {st }}$ principles.

Very useful information which candidates forget appear usually in the beginning of the paper as:
"You are provided with..."
All calculation must be to the $4^{\text {th }}$ decimal point unless they divide fully to a lesser decimal point.

Never round off answers.

b)Thermochemistry/energy changes

Energy is the capacity to do work which is measured in $\operatorname{Joules}(\mathbf{J}) \operatorname{or}(\mathrm{k} \mathbf{J})$.
Chemical/physical changes take place with absorption (Endothermic) or evolution/
production (Exothermic)of heat.
Practically:
(i)endothermic changes show absorption of heat by a fall / drop in temperature and has $a+\Delta \mathbf{H}$
(ii)exothermic changes show evolution/ production of heat by a rise in temperature and has a $-\Delta \mathbf{H}$
(iii)temperature is measure using a thermometer.
(iv)a school thermometer is either coloured (alcohol) or colourless(mercury)
(v) For accuracy ,candidates in the same practical session should use the same type of thermometer.
(vi) fall / drop $(+\Delta \mathbf{H})$ in temperature is movement of thermometer level downward.
(vii) rise $(\underline{-\Delta \mathbf{H}})$ in temperature is movement of thermometer level upwards.

Physical changes changes mainly involve melting/freezing/fussion and boiling
/vapourization.
Chemical changes changes mainly involve displacement , dissolving, neutralization
a).Energy changes in physical processes

Melting/freezing/fusion/solidification and boiling/vaporization/evaporation are the two physical processes.
Melting /freezing point of pure substances is fixed /constant.
The boiling point of pure substance depends on external atmospheric pressure. Melting/fusion is the physical change of a solid to liquid. Freezing/fusion is the physical change of a liquid to solid.
Melting/freezing/fusion/solidification are therefore two opposite but same reversible physical processes. i.e

$$
\mathrm{A}(\mathrm{~s})========\mathrm{A}(\mathrm{l})
$$

Boiling/vaporization/evaporation is the physical change of a liquid to gas/vapour. Condensation/liquidification is the physical change of gas/vapour to liquid. Boiling/vaporization/evaporation and condensation/liquidification are therefore two opposite but same reversible physical processes. i.e

B (l) ========B(g)
Practically
(i) Melting/liquidification/fusion involves heating a solid to weaken the strong bonds holding the solid particles together.
Solids are made up of very strong bonds holding the particles very close to each other (Kinetic Theory of matter

On heating these particles gain energy/heat from the surrounding heat source to form a liquid with weaker bonds holding the particles close together but with some degree of freedom.
Melting/fusion is an endothermic $(+\Delta \mathrm{H})$ process that require/absorb energy from the surrounding.
(ii)Freezing/fusion/solidification involves cooling a a liquid to reform/rejoin the very strong bonds to hold the particles very close to each other as solid and thus lose their degree of freedom (Kinetic Theory of matter).
Freezing /fusion / solidification is an exothermic $(-\Delta \mathrm{H})$ process that require particles holding the liquid together to lose energy to the surrounding.
(iii)Boiling/vaporization/evaporation involves heating a liquid to completely
break/free the bonds holding the liquid particles together.
Gaseous particles have high degree of freedom (Kinetic Theory of matter). Boiling /vaporization / evaporation is an endothermic $(+\Delta \mathrm{H})$ process that require/absorb energy from the surrounding.
(iv)Condensation/liquidification is reverse process of boiling /vaporization / evaporation.
It involves gaseous particles losing energy to the surrounding to form a liquid.It is an exothermic $(+\Delta \mathrm{H})$ process.
The quantity of energy required to change one mole of a solid to liquid or to form one mole of a solid from liquid at constant temperature is called molar enthalpy/latent heat of fusion. e.g.
$\mathrm{H}_{2} \mathrm{O}(\mathbf{s}) \quad->\mathrm{H}_{2} \mathrm{O}(\mathbf{l}) \Delta \mathrm{H}=+\mathbf{6} .0 \mathbf{k J} \mathrm{~mole}^{-1}$ (endothermic process)
$\mathrm{H}_{2} \mathrm{O}(\mathbf{l}) \quad->\mathrm{H}_{2} \mathrm{O}(\mathbf{s}) \Delta \mathrm{H}=\mathbf{- 6 . 0 k J}$ mole ${ }^{-1}$ (exothermic process)
The quantity of energy required to change one mole of a liquid to gas/vapour or to form one mole of a liquid from gas/vapour at constant temperature is called molar enthalpy/latent heat of vapourization. e.g.
$\mathrm{H}_{2} \mathrm{O}(\mathbf{l})->\mathrm{H}_{2} \mathrm{O}(\mathbf{g}) \Delta \mathrm{H}=+\mathbf{4 4 . 0} \mathrm{kJ} \mathrm{mole}^{-1}$ (endothermic process)
$\mathrm{H}_{2} \mathrm{O}(\mathbf{g})->\mathrm{H}_{2} \mathrm{O}(\mathbf{l}) \Delta \mathrm{H}=\mathbf{4 4 . 0 \mathbf { k J ~ m o l e } ^ { - 1 }}$ (exothermic process)

- To determine the boiling point of water

Procedure:

Measure 20 cm 3 of tap water into a 50 cm 3 glass beaker. Determine and record its temperature.Heat the water on a strong Bunsen burner flame and record its temperature after every thirty seconds for four minute
Sample results

Time (seconds)	0	30	60	90	120	150	180	210	240
Temperature ($^{\circ} \mathrm{C}$)	25.0	45.0	85.0	95.0	96.0	96.0	96.0	97.0	98.0

Questions
1.Plot a graph of temperature against time(y-axis)

Sketch graph of temperature against time

Time in Seconds
2.From the graph show and determine the boiling point of water

Note:
Water boils at $100^{\circ} \mathrm{C}$ at sea level/one atmosphere pressure $/ 101300 \mathrm{~Pa}$ but boils at below $100^{\circ} \mathrm{C}$ at higher altitudes.
The sample results above are from Kiriari Girls High School-Embu County on the slopes of Mt Kenya in Kenya. Water here boils at $96^{\circ} \mathrm{C}$.
3.Calculate the molar heat of vaporization of water. $(\mathrm{H}=1.0, \mathrm{O}=16 . \mathrm{O})$

Working:
Mass of water $=$ density x volume $=>(20 \times 1) / 1000=0.02 \mathrm{~kg}$
Quantity of heat produced
$=$ mass of water x specific heat capacity of water x temperature change $\Rightarrow>0.02 \mathrm{~kg} \times 4.2 \times(96-25)=-5.964 \mathrm{~kJ}$

Heat of vaporization of one mole $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& =\quad \frac{\text { Quantity of heat }}{\text { Molar mass of } \mathrm{H}_{2} \mathrm{O}} \\
& \Rightarrow \quad \frac{-5.964 \mathrm{~kJ}}{18}=-0.3313 \mathrm{~kJ} \mathrm{~mole}^{-1}
\end{aligned}
$$

To determine the melting point of candle wax

Procedure

Weigh exactly 5.0 g of candle wax into a boiling tube. Heat it on a strongly Bunsen burner flame until it completely melts.
Insert a thermometer and remove the boiling tube from the flame. Stir continuously. Determine and record the temperature after every 30 seconds for four minutes.

Sample results

Time (seconds)	0	30	60	90	120	150	180	210	240
Temperature (C)	93.0	85.0	78.0	70.0	69.0	69.0	69.0	67.0	65.0

Questions

1.Plot a graph of temperature against time(y-axis)

Sketch graph of temperature against time

b)Energy changes in chemical processes
(i)Standard enthalpy/heat of displacement $\Delta \mathrm{H}_{\mathrm{d}}{ }_{\mathrm{d}}$
(ii)Standard enthalpy/heat of neutralization $\Delta \mathrm{H}_{\mathrm{n}}{ }_{\mathrm{n}}$
(iii)Standard enthalpy/heat of solution/dissolution $\Delta \mathrm{H}_{\mathrm{s}}{ }^{\text {s }}$
(i) Standard enthalpy/heat of displacement $\Delta \mathrm{H}_{\mathrm{d}}{ }_{\mathrm{d}}$

The molar standard enthalpy/heat of displacement may be defined as the energy/heat change when one mole of substance is displaced /removed from its solution at standard conditions
Some displacement reactions
(i) $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq})->\mathrm{Cu}(\mathrm{s})+\mathrm{ZnSO}_{4}(\mathrm{aq})$

Ionically: $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})->\mathrm{Cu}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})$
(ii) Fe (s) $+\mathrm{CuSO}_{4}(\mathrm{aq})->\mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{4}(\mathrm{aq})$

Ionically: Fe (s) $+\mathrm{Cu}^{2+}(\mathrm{aq})->\mathrm{Cu}(\mathrm{s})+\mathrm{Fe}^{2+}(\mathrm{aq})$
(iii) $\mathrm{Pb}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq})->\mathrm{Cu}(\mathrm{s})+\mathrm{PbSO}_{4}(\mathbf{s})$

This reaction stops after some time as insoluble $\mathrm{PbSO}_{4}(\mathbf{s})$ coat/cover unreacted lead.
(iv) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NaBr}(\mathrm{aq})->\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{NaCl}(\mathrm{aq})$

Ionically:
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Br}^{-}(\mathrm{aq})->\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
To determine the molar standard enthalpy/heat of displacement $\left(\Delta \mathbf{H}^{\theta} \mathbf{d}\right)$ of copper
Procedure

Place 20 cm 3 of 0.2 M copper(II)sulphate(VI)solution into a 50 cm 3 plastic beaker/calorimeter.
Determine and record the temperature of the solution T_{1}.
Put all the Zinc powder provided into the plastic beaker. Stir the mixture using the thermometer.
Determine and record the highest temperature change to the nearest $0.5^{\circ} \mathrm{C}-\mathrm{T}_{2}$.
Repeat the experiment to complete table 1 below
Sample results Table 1

Experiment	I	II
Final temperature of solution $\left(\mathrm{T}_{2}\right)$	$30.0^{\circ} \mathrm{C}$	$31.0^{\circ} \mathrm{C}$
initial temperature of solution $\left(\mathrm{T}_{1}\right)$	$25.0^{\circ} \mathrm{C}$	$24.0^{\circ} \mathrm{C}$
Change in temperature $(\Delta \mathrm{T})$	5.0°	6.0°

Questions

1.(a) Calculate:

(i)average ΔT

Average $\Delta \mathrm{T}=$ change in temperature in experiment I and II

$$
=>\frac{5.0+6.0}{2}=5.5^{\circ} \mathrm{C}
$$

(ii)the number of moles of solution used

Moles used $=\frac{\text { molarity } \mathrm{x} \text { volume of solution }}{1000}=\underline{0.2 \times 20}=\mathbf{0 . 0 0 4}$ moles
(iii) the enthalpy change $\Delta \mathbf{H}$ for the reaction

Heat produced $\Delta \mathbf{H}=$ mass of solution $(\mathbf{m}) \times$ specific heat capacity $(\mathbf{c}) \times \Delta \mathbf{T}$

$$
=\frac{20 \times 4.2 \times 5.5}{1000}=\frac{462 \text { Joules }=-\mathbf{0 . 4 6 2} \mathbf{~ k J}}{1000}
$$

(iv)State two assumptions made in the above calculations.

Density of solution $=$ density of water $=1 \mathrm{gcm}^{-3}$
Specific heat capacity of solution=Specific heat capacity of water $=4.2 \mathrm{~kJ}^{-1} \mathrm{~kg}^{-1} \mathrm{~K}$
This is because the solution is assumed to be infinite dilute.
2. Calculate the enthalpy change for one mole of displacement of $\mathbf{C u}^{2+}(\mathrm{aq})$ ions.

Molar heat of displacement $\Delta \mathrm{H}_{\mathrm{d}}=$ Heat produced $\Delta \mathrm{H}$
Number of moles of fuel

$$
\Rightarrow \quad \frac{0.462 \mathrm{~kJ}}{0.004} \quad=\mathbf{- 1 1 5 . 5} \mathrm{kJmole}^{-1}
$$

3.Write an ionic equation for the reaction taking place.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{Zn}^{2+}(\mathrm{aq})
$$

4.State the observation made during the reaction.

Blue colour of copper(II)sulphate(VI) fades/becomes less blue/colourless. Brown solid deposits are formed at the bottom of reaction vessel/ beaker. 5.Illustrate the above reaction using an energy level diagram.

Reaction path/coordinate/ progress
8. The enthalpy of displacement ΔH_{d} of copper(II)sulphate (VI) solution is $12 \mathrm{k} 6 \mathrm{kJmole}{ }^{-1}$. Calculate the molarity of the solution given that 40 cm 3 of this solution produces 2.204 kJ of energy during a displacement reaction with excess iron filings.
Number of moles $=\underline{\text { Heat produced } \Delta H}$
Molar heat of displacement $\Delta \mathrm{H}_{\mathrm{d}}$

$$
\Rightarrow \frac{2.204 \mathrm{~kJ}}{126 \mathrm{moles}}=\mathbf{0 . 0 2 0 6 m o l e s}
$$

Molarity of the solution $=\underline{\text { moles } \times 1000}$
Volume of solution used
$=\frac{0.0206 \text { moles } \times 1000}{40}=\mathbf{0 . 5 1 6 7} \mathbf{M}$

Graphical determination of the molar enthalpy of displacement of copper

Procedure:
Place 20 cm 3 of 0.2 M copper(II)sulphate (VI) solution into a calorimeter/50cm3 of plastic beaker wrapped in cotton wool/tissue paper.

PDF Eraser Free

Record its temperature at time $\mathrm{T}=0$.Stir the solution with the thermometer carefully and continue recording the temperature after every 30 seconds .
Place all the (1.5 g) Zinc powder provided after $11 / 2$ minutes.
Stir the solution with the thermometer carefully and continue recording the temperature after every 30 seconds for five minutes.
Determine the highest temperature change to the nearest $0.5^{\circ} \mathrm{C}$.

Sample results

Time ${ }^{\circ} \mathrm{C}$	0.0	30.0	60.0	90.0	120.0	150.0	180.0	210.0	240.0	270.0
Temperature	25.0	25.0	25.0	25.0	25.0	xxx	36.0	35.5	35.0	34.5

Questions

1.Show and determine the change in temperature ΔT

From a well constructed graph $\Delta \mathrm{T}=\mathrm{T} 2-\mathrm{T} 1$ at $\mathbf{1 5 0}$ second by extrapolation

$$
\Delta \mathrm{T}=36.5-25.0=11.5^{\circ} \mathrm{C}
$$

2.Calculate the number of moles of copper(II) sulphate(VI)used given the molar heat of displacement of $\mathbf{C u}^{2+}(\mathrm{aq})$ ions is $125 \mathrm{kJmole}{ }^{-1}$
Heat produced $\Delta \mathbf{H}=$ mass of solution $(\mathbf{m}) \times$ specific heat capacity $(\mathbf{c}) \times \Delta \mathbf{T}$

$$
\Rightarrow 20 \times 4.2 \times 11.5=\underline{966} \mathbf{J} \text { oules }=-\mathbf{0 . 9 6 6} \mathbf{~ k J}
$$

1000
Number of moles $=$ \qquad
Molar heat of displacement $\Delta \mathrm{H}_{\mathrm{d}}$

$$
\begin{aligned}
=> & \frac{0.966 \mathrm{~kJ}}{125 \mathrm{moles}}=\begin{array}{l}
-\mathbf{0 . 0 0 7 7 2 8 m o l e s} \\
\\
-7.728 \times 1 \mathbf{1 0}^{-3} \mathrm{moles}
\end{array}
\end{aligned}
$$

3. What was the concentration of copper(II)sulphate(VI) in moles per litre.

Molarity $=\frac{\text { moles x } 1000}{\text { Volume used }}$

$$
=>\frac{7.728 \times 10^{-3} \mathrm{moles} \times 1000}{20}=\mathbf{0 . 3 8 6 4 M}
$$

4.The actual concentration of copper

(II) Sulphate (VI) solution was 0.4 M . Explain the differences between the two. Practical value is lower than theoretical
. Heat/energy loss to the surrounding and that absorbed by the reaction vessel decreases $\Delta \mathrm{T}$ hence lowering the practical number of moles and molarity against the theoretical value

(c)Standard enthalpy/heat of neutralization $\Delta \mathbf{H}^{\theta_{n}}$

The molar standard enthalpy/heat of neutralization $\Delta \mathbf{H}_{\mathrm{n}}{ }_{\mathrm{n}}$ is defined as the energy/heat change when one mole of a $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ions react completely with one mole of OH^{-}ions to form one mole of $\mathrm{H}_{2} \mathrm{O}$ /water.
Neutralization is thus a reaction of an acid $/ \mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ions with a base/alkali/ OH^{-}ions to form salt and water only.
Strong acids/bases/alkalis are completely/fully/wholly dissociated to many free ions $\left(\mathrm{H}^{+}\right.$ $/ \mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions).
(ii) for strong acid/base/alkali neutralization, no energy is used to dissociate /ionize since molecule is wholly/fully dissociated/ionized into free $\mathrm{H}^{+} \mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions. The overall energy evolved is comparatively higher / more than weak acid-base/ alkali neutralizations.
For strong acid-base/alkali neutralization, the enthalpy of neutralization is constant at about $57.3 \mathrm{kJmole}^{-1}$ irrespective of the acid-base used.
This is because ionically:
$\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$-> $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
for all wholly/fully /completely dissociated acid/base/alkali
Weak acids/bases/alkalis are partially dissociated to few free ions $\left(\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right.\right.$and OH^{-} ions) and exist more as molecules.
Neutralization is an exothermic $(-\Delta \mathrm{H})$ process.
The energy produced during neutralization depend on the amount of free ions $\left(\mathrm{H}^{+} \mathrm{H}_{3} \mathrm{O}^{+}\right.$ and OH^{-})ions existing in the acid/base/alkali reactant:
(i)for weak acid-base/alkali neutralization,some of the energy is used to dissociate /ionize the molecule into free $\mathrm{H}^{+} \mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions therefore the overall energy evolved is comparatively lower/lesser/smaller than strong acid / base/ alkali neutralizations.

PDF Eraser Free

Practically $\Delta \mathrm{H}^{\ominus}{ }_{\mathrm{n}}$ can be determined as in the examples below:

To determine the molar enthalpy of neutralization $\Delta \mathbf{H}_{\underline{n}}$ of Hydrochloric acid

 ProcedurePlace 50 cm 3 of 2 M hydrochloric acid into a calorimeter $/ 200 \mathrm{~cm} 3$ plastic beaker wrapped in cotton wool/tissue paper.
Record its temperature T_{1}.
Using a clean measuring cylinder, measure another 50 cm 3 of 2 M sodium hydroxide.
Rinse the bulb of the thermometer in distilled water.
Determine the temperature of the sodium hydroxide T_{2}.
Average T_{2} and T_{1} to get the initial temperature of the mixture T_{3}.
Carefully add all the alkali into the calorimeter/200cm3 plastic beaker wrapped in cotton wool/tissue paper containing the acid.
Stir vigorously the mixture with the thermometer.
Determine the highest temperature change to the nearest $0.5^{\circ} \mathrm{C} \mathrm{T}_{4}$ as the final temperature of the mixture.
Repeat the experiment to complete table 1.
(ii)enthalpy change $\Delta \mathrm{H}$ of neutralization.
$\Delta \mathrm{H}=(\mathbf{m})$ mass of solution(acid+base) $\times(\mathbf{c})$ specific heat capacity of solution $\times \Delta \mathbf{T}\left(\mathrm{T}_{6}\right)$
=> $(50+50) \times 4.2 \times 13.5=\underline{\mathbf{5 6 7 0} \text { Joules }}=\mathbf{5 . 6 7} \mathrm{kJ}$
(iii) the molar heat of neutralization the acid.
$\Delta \mathrm{H}_{\mathrm{n}}=\frac{\text { Enthalpy change } \Delta \mathrm{H}}{\text { Number of moles }} \quad \Rightarrow \frac{5.67 \mathrm{~kJ}}{0.1 \mathrm{moles}}=\mathbf{5 6 . 7} \mathbf{k J} \mathrm{mole}^{-1}$
(c)Write the ionic equation for the reaction that takes place
$\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$-> $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(d)The theoretical enthalpy change is 57.4 kJ . Explain the difference with the results above.

The theoretical value is higher
Heat/energy loss to the surrounding/environment lowers $\Delta T / T_{6}$ and thus ΔH_{n} Heat/energy is absorbed by the reaction vessel/calorimeter/plastic cup lowers $\Delta \mathrm{T}$ and hence $\Delta \mathrm{H}_{\mathrm{n}}$

Sample results

Experiment	I	II
Temperature of acid $\mathrm{T}_{1}\left(^{\circ} \mathrm{C}\right)$	22.5	22.5
Temperature of base $\mathrm{T}_{2}\left(^{\circ} \mathrm{C}\right)$	22.0	23.0
Final temperature of solution $\mathrm{T}_{4}\left({ }^{\circ} \mathrm{C}\right)$	35.5	36.0
Initial temperature of solution $\mathrm{T}_{3}\left({ }^{\circ} \mathrm{C}\right)$	22.25	22.75
Temperature change $\left(\mathrm{T}_{5}\right)$	13.25	13.75

(a)Calculate T_{6} the average temperature change

$$
\underline{13.25+13.75}=13.5^{\circ} \mathbf{C}
$$

(b)Why should the apparatus be very clean?

Impurities present in the apparatus reacts with acid /base lowering the overall temperature change and hence $\Delta \mathrm{H}_{\mathrm{n}}{ }_{\mathrm{n}}$.
(c)Calculate the:
(i)number of moles of the acid used

$$
\text { number of moles }=\frac{\text { molarity } \mathrm{x} \text { volume }}{1000} \quad \Rightarrow \quad \frac{2 \times 50}{1000}=0.1 \mathrm{moles}
$$

(e)Compare the $\Delta \mathbf{H}_{\mathrm{n}}$ of the experiment above with similar experiment repeated with neutralization of a solution of:
(i) potassium hydroxide with nitric(V) acid

The results would be the same/similar.
Both are neutralization reactions of strong acids and bases/alkalis that are fully /wholly dissociated into many free $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions.
(ii) ammonia with ethanoic acid

The results would be lower/ $\Delta \mathrm{H}_{\mathrm{n}}$ would be less.
Both are neutralization reactions of weak acids and bases/alkalis that are partially /partly dissociated into few free $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions. Some energy is used to ionize the molecule.
(f)Draw an energy level diagram to illustrate the energy changes

Theoretical examples
1.The molar enthalpy of neutralization was experimentary shown to be 51.5 kJ per mole of 0.5 M hydrochloric acid and 0.5 M sodium hydroxide. If the volume of
sodium hydroxide was 20 cm 3 , what was the volume of hydrochloric acid used if the reaction produced a $5.0^{\circ} \mathrm{C}$ rise in temperature?
Working:
Moles of sodium hydroxide $=\frac{\text { molarity } \mathrm{x} \text { volume }}{1000}$

$$
\Rightarrow \frac{0.5 \mathrm{M} \mathrm{x} \mathrm{20cm} 3}{1000}=\mathbf{0 . 0 1} \text { moles }
$$

Enthalpy change $\Delta \mathrm{H} \underset{\text { Moles sodium hydroxide }}{=} \quad \Rightarrow \quad \underline{\mathrm{H}_{n}} \quad \underline{51.5}=\mathbf{0 . 5 1 5 k J}$
Mass of base + acid $=\quad$ Enthalpy change ΔH in Joules Specific heat capacity x ΔT

$$
\Rightarrow \frac{0.515 \mathrm{~kJ} \times 1000}{4.2 \times 5}=\mathbf{2 4 . 5 2 3 8 \mathrm { g }}
$$

Mass/volume of $\mathrm{HCl}=$ Total volume - volume of NaOH

$$
\Rightarrow 24.5238-20.0=4.5238 \mathrm{~cm} 3
$$

Graphically $\Delta \mathrm{H}_{\mathrm{n}}$ can be determined as in the example below:
Procedure
Place 8 test tubes in a test tube rack .
Put 5 cm 3 of 2 M sodium hydroxide solution into each test tube. Measure 25 cm 3 of 1 M hydrochloric acid into 100 cm 3 plastic beaker.
Record its initial temperature at volume of base $=0$.
Put one portion of the base into the beaker containing the acid.
Stir carefully with the thermometer and record the highest temperature change to the nearest $0.5^{\circ} \mathrm{C}$.
Repeat the procedure above with other portions of the base to complete table 1 below

Volume of acid(cm3)	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Volume of alkali(cm3)	0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
Final temperature ${ }^{\circ}$ C)	22.0	24.0	26.0	28.0	28.0	27.0	26.0	25.0	24.0
Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
Change in temperature	0.0	2.0	4.0	6.0	6.0	5.0	4.0	3.0	2.0

Complete the table to determine the change in temperature. Plot a graph of volume of sodium hydroxide against temperature change. From the graph show and determine :
(i)the highest temperature change ΔT

PDF Eraser Free

$\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}$: highest temperature- T_{2} (from extrapolating a correctly plotted graph) less lowest temperature at volume of base $=0-\mathrm{T}_{1}$

$$
\Rightarrow 28.7-22.0=6.70^{\circ} \mathbf{C}
$$

(ii) the volume of sodium hydroxide used for complete neutralization From correctly plotted graph $=\mathbf{1 6 . 7 5} \mathbf{~ c m 3}$
(iii) Calculate the number of moles of the alkali used Moles $\mathrm{NaOH}=\underline{\text { molarity } \mathrm{x} \text { volume }() \mathrm{Vn}=}$ 1000

$$
\Rightarrow \frac{2 \times 16.75}{1000}=\mathbf{0 . 0 3 3 5} \text { moles }
$$

(iv)Calculate $\Delta \mathrm{H}$ for the reaction.

$$
\begin{aligned}
\Delta \mathrm{H} & =\text { mass of solution mixture } \times \mathrm{c} \times \Delta \mathbf{T} \\
& =>(25.0+16.75) \times 4.2 \times 6.7
\end{aligned}
$$

$$
=\frac{\mathbf{1 1 7 4 . 8 4 5}}{1000} \mathrm{~J}=\underline{\mathbf{1 . 1 7 4 8 4 5}} \mathrm{kJ}
$$

PDF Eraser Free

(iii) Calculate the molar enthalpy of the alkali:

$$
\begin{aligned}
\Delta \mathrm{Hn} & =\underset{\text { number of moles }}{\text { Heat change }} \Rightarrow \frac{1.174845}{0.0335} \mathbf{~ k J} \\
& =\mathbf{3 5 . 0 6 9 9 k J} \text { moles }
\end{aligned}
$$

(i) Standard enthalpy/heat of solution/dissolution $\Delta \mathrm{H}^{\theta}{ }_{\mathrm{s}}$ The standard enthalpy of solution $\Delta \mathrm{H}_{\mathrm{s}}{ }_{\mathrm{s}}$ is defined as the energy change when one mole of a substance is dissolved in excess distilled water to form an infinite dilute solution. An infinite dilute solution is one which is too dilute to be diluted further.
Practically the heat of solution is determined by dissolving a known mass/volume of a solute in known mass/volume of water/solvent and determining the temperature change.
To determine the heat of dissolution of ammonium nitrate (\mathbf{V})
Place 100 cm 3 of distilled water into a plastic cup/beaker/calorimeter
Put all the 5.0 g of ammonium nitrate(v)/potassium nitrate(V)/ ammonium chloride into the water.
Stir the mixture using the thermometer and record the temperature change after every $1 / 2$ minute to complete table1.
Continue stirring throughout the experiment.

Sample results:Table1

time(minutes)	0	$1 / 2$	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	22.0	21.0	20.0	19.0	19.0	19.5	20.0	20.5

Plot a graph of temperature (y-axis)against temperature

[^0](a)From the graph show and determine:

PDF Eraser Free

(i)the highest temperature change ΔT

$\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}$: highest temperature- T_{2} (from extrapolating a correctly plotted graph) less lowest temperature at volume of base $=0-\mathrm{T}_{1}$

$$
\Rightarrow 18.7-22.0=\mathbf{3 . 3}{ }^{\circ} \mathbf{C} \quad\left(\text { not }-\mathbf{3 . 3}{ }^{\circ} \mathbf{C}\right)
$$

(b) Calculate the total energy change $\Delta \mathrm{H}$ during the reaction

$$
\Delta \mathrm{H}=\text { mass of water } \mathrm{xc} \times \Delta \mathrm{T}
$$

$$
\Rightarrow \Delta \mathrm{H}=100 \times 4.2 \times 3.3^{\circ} \mathrm{C}=+\frac{\mathbf{1 3 8 6} \mathbf{~ J}}{1000}=+\mathbf{1 . 3 8 6} \mathbf{~ k J}
$$

(c) Calculate the number of moles of ammonium nitrate (v) used
Moles $=\underset{\text { molar mass }}{\text { mass }} \Rightarrow \frac{5.0}{80}=\mathbf{0 . 0 6 2 5}$ moles
(d)What is the molar heat of dissolution of ammonium nitrate(\mathbf{V})
$\Delta \mathrm{H}=\underline{\text { Heat change }}=+1.386 \mathrm{~kJ}=+\mathbf{2 2 . 1 7 6} \mathrm{kJmole}^{-1}$
Number of mole 0.0625 moles
(e)What would happen if the distilled water is heated before experiment was performed.
The ammonium nitrate(V) would take less time to dissolve.
Increase in temperature reduces lattice energy causing endothermic dissollution to be faster.
(e)Illustrate the above process on an energy level diagram

Graphically $\Delta \mathrm{Hr}$ can be represented in an energy level diagram Endotherpic process

PDF Eraser Free

c)Chemical Kinetic/Rate of reaction

The rate of a chemical reaction can be defined as the time taken for a known amount of reactants to form known amount of products.
Some reactions are too slow to be determined e.g weathering others are instantaneous The SI unit of time is seconds. Minutes and hours are also common .
Time is determined using a stop watch/clock
Candidates using stop watch/clock should learn to:
(i)Press start button concurrently with starting off determination of a reaction using one hand each.
(ii)Press stop button when the reaction is over.
(iii)Record all times in seconds unless specified.
(iv)Press reset button to begin another timing
(v)Ignore time beyond seconds for stop clock/watch beyond this accuracy
(vi)Avoid accidental pressing of any button before recording

It can be very frustrating repeating a whole procedure
The following factors theoretically and practically alter/influence/affect/determine the rate of a chemical reaction:
(a)Concentration
(b)Temperature
(a)Concentration

An increase in concentration increases the rate the rate of reaction by reducing the time taken to completion.
Theoretically, increase in concentration is a decrease in distance between reacting particles which increases their collision frequency.
Practically decreasing concentration is diluting/adding water
To demonstrate the effect of concentration on reaction rate
You are provided with
(i) sodium thiosulphate containing $40 \mathrm{gdm}^{-3}$ solution labeled A
(ii) 2 M hydrochloric acid labeled solution B

You are required to determine the rate of reaction between solution A and B

Procedure

Measure 40 cm 3 of solution A into 100 cm 3 glass beaker. Place it on top of a pen-mark " X ". Measure another 40 cm 3 of solution B. Simultaneously put solution B into solution A and start off a stop watch/clock. Determine the time taken for the pen-mark " X " to be invisible/obscurred from above. Repeat the procedure by measuring 35 cm 3 of solution B and adding 5 cm 3 of water. Complete the table 1 below by using other values os solution B and water

Sample results: Table 1

Volume of solution A $(\mathrm{cm} 3)$	40	40	40	40	40	40
Volume of solution B $(\mathrm{cm} 3)$	40	35	30	25	20	15
Volume of water (cm3)	0	5	10	15	20	25
Time taken for x to be invisible	14	17	21	25	50	120
$1 / \mathrm{t}$	0.0714	0.0588	0.0351	0.04	0.02	0.0083

Calculate $1 /$ in each case

Plot a graph of $1 / \mathrm{t}$ (y -axis) against volume of solution B.

Sample questions

(i)Explain the shape of the graph
(Straight line graph from the origin)

Decrease in concentration decreases the rate of reaction. The higher the concentration of solution B the less time taken for mark x to be obscurred/invisible due to increased collision frequency between the reacting particles.
(ii)From the graph determine the time taken for the mark to be invisible at 37 cm 3 At 37 cm 3 then $1 / \mathrm{t}=>1 / 37=0.027$
From a well plotted graph:

$$
1 / t=0.027 \Rightarrow \mathbf{1 6 . 2 6 0 2} \text { seconds }
$$

(ii)From the graph determine the volume of solution B at 100 seconds 100 seconds $=>1 / \mathrm{t}=1 / 1000=0.01$
From a well plotted graph:
At $1 / t=0.01=>$ the volume of $B=\mathbf{1 7 . 0} \mathbf{c m} 3$
(iii) State another factor that would alter the rate of the above reaction. Temperature
(iii) State another factor that would not alter the rate of the above reaction.

Surface area

Pressure
Catalyst

(b) Temperature

An increase in temperature increases the rate of reaction.
An increase of $10^{\circ} \mathrm{C} / 10 \mathrm{~K}$ practically doubles the rate of a chemical reaction/reduces time of completion by $1 / 2$.
An increase in temperature increase the kinetic energy of reacting particles increasing their collision frequency
Practically, increase in temperature involves heating the reactants
The results and presentation should be as in the effect of concentration.
Increased temperature reverses the table I time results
i.e less time as temperature increases.

d)Qualitative analysis

Process of identifying unknown compounds
Compounds may be:
(i)Inorganic
(ii)organic

Inorganic analysis:

This involve mainly identification of ionic compounds containing cations and anions. Cations present in an ionic compounds are identified by adding a precipitating reagent that forms a precipitate unique to the cation/s in the compound.
The main precipitating reagents used are:

PDF Eraser Free

$\mathbf{2 M ~ N a O H}$ and/or $\mathbf{2 M} \mathbf{N H}_{\mathbf{3}}(\mathbf{a q})$

When using 2 M sodium hydroxide:
(i)No white precipitate is formed if \mathbf{K}^{+}and $\mathbf{N a}^{+}$ions are present
(ii) No white precipitate is formed if $\mathbf{N H}_{4}{ }^{+}$ions are present but a clourless gas with pungent smell of urine is produced which may not be recognized in a school laboratory examination setting.
(iii)White precipitate that dissolves / soluble in excess if $\quad \mathbf{Z n}^{\mathbf{2 +}} \mathbf{P b}^{\mathbf{2 +}} \mathbf{A l}^{\mathbf{3 +}}$ ions are present.
(iv)White precipitate that do not dissolves/insoluble in excess if $\mathbf{B a}^{\mathbf{2 +}} \mathbf{M g}^{\mathbf{2 +}} \mathbf{C a}^{\mathbf{2 +}}$ ions are present.
(v)Blue precipitate that do not dissolves /insoluble in excess if $\mathbf{C u}^{2+}$ ions are present. (vi)Green precipitate that do not dissolves/insoluble in excess if $\mathbf{F e}^{2+}$ ions are present. (vii)Brown precipitate that do not dissolves/insoluble in excess if $\mathbf{F e}^{3+}$ ions are present.

When using 2 M aqueous ammonia
(i)No white precipitate is formed if $\mathbf{K}^{+}, \mathbf{N H}_{4}{ }^{+} \mathbf{N a}^{+}$ions are present
(ii)White precipitate that dissolves / soluble in excess if $\quad \mathbf{Z n}^{2+}$ ions are present.
(iii) White precipitate that do not dissolves/insoluble in excess if $\mathbf{B a}^{2+} \mathbf{M g}^{2+} \mathbf{C a}^{2+} \mathbf{P b}^{2+}$
$\mathbf{A l}^{3+}$ ions are present.
(iv)Blue precipitate that dissolves/soluble in excess to form a deep/royal blue solution in excess if $\mathbf{C u}^{2+}$ ions are present.
(v)Green precipitate that do not dissolves/insoluble in excess if $\mathbf{F e}^{2+}$ ions are present. (vi)Brown precipitate that do not dissolves/insoluble in excess if $\mathbf{F e}$ er ions are present.

Anions present in an ionic compounds are identified by adding a specific precipitating reagent that forms a precipitate unique to the specific anion/s in the compound.
(i)Lead(II)nitrate(V) solution

Lead forms insoluble $\mathrm{PbSO}_{4}, \mathrm{PbSO}_{3}, \mathrm{PbCO}_{3}, \mathrm{PbS}, \mathrm{PbI}_{2}, \mathrm{PbCl}_{2}$
PbS is a black precipitate,
PbI_{2} is a yellow precipitate.
All the others are white precipitates.
(a)If a Lead(II)nitrate(V) solution is added to a substance/ solution/ compound :
(i)A yellow ppt shows presence of I^{-}ions
(ii)A black ppt shows presence of \mathbf{S}^{2-} ions
(iii) A white ppt shows presence of ${\underline{\mathrm{SO}_{4}}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-} \mathrm{Cl}^{-}}^{-}$
(b)If the white precipitate is added dilute nitric(V) acid:
(i)It dissolves to show presence of $\mathrm{SO}_{3}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}$
(ii)It persist/remains to show presence of $\mathrm{SO}_{4}{ }^{2-}, \mathrm{Cl}^{-}$

PDF Eraser Free

(c)If the white precipitate in $\mathrm{b}(\mathrm{i})$ is added acidified potassium manganate(VII)/ dichromate(VI)
(i) acidified potassium manganate(VII) is decolorized /orange colour of acidified potassium dichromate(VI) turns to green to show presence of $\mathrm{SO}_{3}{ }^{2-}$
(ii) acidified potassium manganate(VII) is not decolorized /orange colour of acidified potassium dichromate(VI) does not turn to green/remains orange to show absence of $\mathrm{SO}_{3}{ }^{2-}$ /presence of $\mathrm{CO}_{3}{ }^{2-}$
(c)If the white precipitate in b (ii) is boiled:
(i)It dissolves to show presence of Cl^{-}
(ii)It persist/remains to show presence of $\mathrm{SO}_{4}{ }^{2-}$
(ii)Barium(II)nitrate(V)/Barium chloride solution

Barium(II)nitrate(V)/Barium chloride solution precipitates $\mathrm{BaSO}_{4}, \mathrm{BaSO}_{3}, \mathrm{BaCO}_{3}$, from $\mathrm{SO}_{4}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}$ ions.
Inorganic qualitative analysis require continous practice discussion

Sample presentation of results

You are provided with solid Y(aluminium (III)sulphate(VI)hexahydrate).Carry out the following tests and record your observations and inferences in the space provided.
1(a) Appearance
Observations

White crystalline solid
inference (1mark)
Coloured ions $\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ absent
(b)Place about a half spatula full of the solid into a clean dry boiling tube. Heat gently then strongly.
Observations

Colourless droplets formed on the cooler part of the test tube
Solid remains a white residue
inference (1mark)
Hydrated compound/compound containing water of crystallization
(c)Place all the remaining portion of the solid in a test tube .Add about 10 cm 3 of distilled water. Shake thoroughly. Divide the mixture into five portions.

Observation

Solid dissolves to form a colourless solution

Inference (1mark)
Polar soluble compound $\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+} \underline{\text { absent }}$
(i)To the first portion, add three drops of sodium hydroxide then add excess of the alkali.

Observation	Inference (1mark)
White ppt, soluble in excess	$\mathrm{Zn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Al}^{3+}$

(ii)To the second portion, add three drops of aqueous ammonia then add excess of the alkali.

Observation
White ppt, insoluble in excess
Inference (1mark)
$\mathrm{Pb}^{2+}, \mathrm{Al}^{3+}$
(iii)To the third portion, add three drops of sodium sulphate(VI)solution.

Observation
No white ppt
Inference (1mark)
Al^{3+}
(iv)I.To the fourth portion, add three drops of Lead(II)nitrate(IV)solution. Preserve

Observation
White ppt
Inference (1mark)
$\mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{Cl}^{-}$,
II.To the portion in (iv) I above, add five drops of dilute hydrochloric acid.

Observation
Inference (1mark)
White ppt persist/remains
III.To the portion in (iv) II above, heat to boil.

Observation
White ppt persist/remains
Inference (1mark)
$\mathrm{SO}_{4}{ }^{2-}$,

Organic analysis:

This involve mainly identification of the functional group:

- $\mathbf{C} \equiv \mathbf{C}-\quad /=\mathbf{C}=\mathbf{C}=\quad 1-\mathrm{C}-\mathrm{C}-$
(ii)

$$
\mathrm{R}-\mathrm{OH}
$$

These functional groups can be identified by:
(i)burning-a substance which "catches fire" must reduce in amount.

Candidates should not confuse burning with flame coloration/test
(ii)Decolorization of bromine water/chlorine water/acidified $\mathrm{KMnO}_{4} /$ to show presence of

$$
-\mathbf{C} \equiv \mathbf{C}-\quad /-\mathbf{C}=\mathbf{C}-\quad \text { and } \mathrm{R}-\mathrm{OH}
$$

(iii)Turning orange acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to green to show presence as in above. (iii) $\mathrm{pH} 1 / 2 / 3$ for strongly acidic solutions. $\mathrm{pH} 4 / 5 / 6$ for weakly acidic solutions (iv)Turning blue litmus paper red. red litmus paper remaining red show presence of \mathbf{H}^{+} ions

d)Flame test

The colour change on a clear colourless Bunsen flame is useful in identifying some cations / metals.
A very clean metallic spatula is recommended since dirt obscures /changes the correct coloration distinct flame coloration of some compounds

Barium/barium salts	orange
Sodium/ sodium salts	yellow
Potassium/potassium salts	Purple/lilac
Lithium/Lithium salts	Deep red/crimson
Calcium/ calcium salts	red

Copper/copper salts	Blue/ green

(e)Physical chemistry

Chemistry is a science subject that incorporate many scientific techniques. Examining body/council, require tabulated results/data from the candidate.
This tabulated results is usually then put in a graph.
The general philosophy of methods of presentation of chemistry practical data is therefore availability of evidence showing:
(i)Practical done(complete table)
(ii)Accuracy of apparatus used(decimal point)
(iii)Accuracy/care in doing experiment to get collect trend(against teachers results)
(iv)Graphical work(use of mathematical science)
(v)Calculations (Scientific mathematical integration)

(f)Sample practicals

Name \qquad Class \qquad Index No.

Candidate's signature

\qquad
Date done \qquad Date marked Date revised

233/3
CHEMISTRY Paper 3
PRACTICAL.
Pre-KCSE Practice 1: 2013
MARKS SCHEME

Instruction to Candidate

Write your name and index number in the spaces provided above.
Sign and write the date of examination in the spaces provided above
Answer all questions in the spaces provided.
Mathematical tables and electronic calculators may be used.
All working must be clearly shown where necessary.
This paper consist of 8 printed pages.
Candidates should check the question paper to ascertain that all the pages are printed and indicated and that no questions are missin

For examiners use only

Question	Maximum score	Candidates core
1	$\mathbf{2 0}$	20
2	$\mathbf{1 0}$	10
3	$\mathbf{1 0}$	10
Total score	$\mathbf{4 0}$	$\mathbf{4 0}$

PDF Eraser Free

1.You are provided with:
(i)solution L containing 5.0 g per litre of a dibasic organic acid $\mathrm{H}_{2} \mathrm{X} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
(ii)solution M which is acidified potassium manganate(VII)
(iii)solution N a mixture of sodium ethanedioate and ethanedioic acid
(iv) 0.1 M sodium hydroxide solution P
(v) 1.0 M sulphuric(VI)

You are required to:
(i)standardize solution M using solution L
(ii) use standardized solution M and solution P to determine the $\%$ of sodium ethanedioate in the mixture.

Procedure 1

Fill the burette with solution M. Pipette 25.0 cm 3 of solution L into a conical flask. Heat this solution to about $70^{\circ} \mathrm{C}$ (but not to boil). Titrate the hot solution L with solution M until a permanent pink colour just appears .Shake thoroughly during the titration. Repeat this procedure to complete table 1.

Table 1

	1	2	3
Final burette reading (cm3)		$\mathbf{2 0 . 0}$	$\mathbf{2 0 . 0}$
Initial burette reading (cm3)	$\mathbf{2 0 . 0}$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$
Volume of N used (cm3)			$\mathbf{2 0 . 0}$

Table 1
$\mathrm{CT}={ }^{1} / 2 \mathrm{mk}$
$D P=1 / 2 \mathrm{mk}$
$A C=1 / 2 \mathrm{mk}$
$A V=1 \mathrm{mk}$
$\mathrm{FA}={ }^{1} / 2 \mathrm{mk}$
Total $=3 \mathrm{mk}$
(2marks)
(a)Calculate the average volume of solution L used
(1mk)

$$
\frac{20.0+20.0+20.0}{3}=\underline{20.0 \mathrm{~cm} 3}
$$

(b)Given that the concentration of the dibasic acid is $0.05 \mathrm{molesdm}^{-3}$. determine the value of x in the formula $\mathrm{H}_{2} \mathrm{X} .2 \mathrm{H}_{2} \mathrm{O}(\mathrm{H}=1.0, \mathrm{O}=16.0)$
(1mark)
Molar mass $\mathbf{H}_{2} \mathbf{X} \cdot 2 \mathrm{H}_{2} \mathrm{O}=\underline{\text { mass } / \text { litre }}=>$
moles / litre
$\frac{5.0 \mathrm{~g} / \mathrm{litre}}{0.05 \mathrm{molesdm}^{-3}}=\underline{100 \mathrm{~g}}$

$$
\mathrm{H}_{2} \mathrm{X} .2 \mathrm{H}_{2} \mathrm{O}=100
$$

$$
X=100-((2 \times 1)+2 \times(2 \times 1)+(2 \times 16) \Rightarrow 100-34=\underline{62}
$$

PDF Eraser Free

(c) Calculate the number of moles of the dibasic acid $\mathrm{H}_{2} \mathrm{X} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. (1mark)

$$
\begin{aligned}
\text { Moles }= & \frac{\text { molarity x pipette volume }}{1000}=> \\
& \frac{0.05 \times 25}{1000}=\underline{0.00125} / \underline{1.25 \times 10^{-3}} \mathrm{moles}
\end{aligned}
$$

(d)Given the mole ratio manganate $(\mathrm{VII})\left(\mathrm{MnO}_{4}^{-}\right)$: acid $\mathrm{H}_{2} \mathrm{X}$ is $2: 5$, calculate the number of moles of manganate(VII) $\left(\mathrm{MnO}_{4}^{-}\right)$in the average titre. (1mark)

$$
\begin{aligned}
& \text { Moles } \mathrm{H}_{2} \mathrm{X}=2 / 5 \text { moles of } \mathrm{MnO}_{4}^{-} \\
& \Rightarrow \quad 2 / 5 \times 0.0125 / 1.25 \times 10^{-2} \text { moles }=\underline{\mathbf{0 . 0 0 0 5}} / \underline{\mathbf{5 . 0} \times 10^{-4}} \text { moles }
\end{aligned}
$$

(e)Calculate the concentration of the manganate(VII) $\left(\mathrm{MnO}_{4}^{-}\right)$in moles per litre.
(1mark)

$$
\begin{aligned}
& \text { Moles per litre/molarity }= \\
& \text { average } \quad \frac{\text { moles } \mathrm{x} 1000}{\text { burette volume }} \\
& \Rightarrow \frac{0.0005 / 5.0 \times 10^{-4} \mathrm{moles} \times 1000}{24.0}=\underline{0.02083} \mathrm{moles}^{-1} / \mathrm{M}
\end{aligned}
$$

Procedure 2

With solution M still in the burette ,pipette 25.0 cm 3 of solution N into a conical flask. Heat the conical flask containing solution N to about $70^{\circ} \mathrm{C}$. Titrate while hot with solution M. Repeat the experiment to complete table 2.
Table 2 (2marks)

	1	2	3
Final burette reading $(\mathrm{cm} 3)$	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$
Initial burette reading $(\mathrm{cm} 3)$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$
Volume of N used $(\mathrm{cm} 3)$	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$

[^1](a)Calculate the average volume of solution L used
(1mk)
$$
\frac{12.5+12.5+12.5}{3}=\underline{12.5} \mathrm{~cm} 3
$$
(b)Calculations:
(i)How many moles of manganate(VII)ions are contained in the average volume of solution M used?

Moles = molarity of solution $\mathbf{M x}$ average burette volume 1000

$$
\Rightarrow \quad \frac{0.02083 \text { molesl }^{-1} / \mathrm{M} \times 12.5}{1000}=\underline{0.00026} / 2.6 \times 10^{-4} \text { moles }
$$

(ii)The reaction between manganate(VII)ions and ethanedioate ions that reacted with is as in the equation:

PDF Eraser Free

$2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq})->2 \mathrm{Mn}^{2+}(\mathrm{aq})+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculate the number of moles of ethanedioate ions that reacted with manganate (VII) ions in the average volume of solution M .
(1mark)
From the stoichiometric/ionic equation:

$$
\begin{aligned}
& \text { mole ratio } \mathrm{MnO}_{4}^{-}(\mathrm{aq}): \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})=2.5 \\
& \Rightarrow \mathrm{moles}^{2} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=5 / 2 \text { moles } \mathrm{MnO}_{4}^{-} \\
& ={ }^{5} / 2 \times 0.00026 / 2.5 \times 10^{-3} \text { moles } \\
& =\underline{0.00065} / \underline{6.5 \times 10^{-4}} \text { moles }
\end{aligned}
$$

(iii)Calculate the number of moles of ethanedioate ions contained in 250 cm 3 solution N. (1mark)

25 cm 3 pipette volume -> $0.00065 / 6.5 \times 10^{-4}$ moles
$250 \mathrm{~cm} 3-\quad \frac{0.0065 / 6.5 \times 10^{-3} \text { moles } \times 250}{25}=\underline{0.0065} / \underline{6.5 \times 10^{-3} \mathrm{moles}}$

Procedure 3

Remove solution M from the burette and rinse it with distilled water. Fill the burette with sodium hydroxide solution P. Pipette 25 cm 3 of solution N into a conical flask and add 2-3 drops of phenolphthalein indicator. Titrate this solution N with collution P from the burette. Repeat the procedure to complete table 3.
Table 3

	1	2	3
Final burette reading $(\mathrm{cm} 3)$	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$
Initial burette reading $(\mathrm{cm} 3)$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$
Volume of N used $(\mathrm{cm} 3)$	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$	$\mathbf{1 2 . 5}$

$\frac{\text { Table } 1}{}$
$\mathrm{CT}=1 / 2 \mathrm{mk}$
$\mathrm{DP}=1 / 2 \mathrm{mk}$
$\mathrm{AC}=1 / 2 \mathrm{mk}$
$\mathrm{AV}=1 \mathrm{mk}$
$\mathrm{FA}=1 / 2 \mathrm{mk}$
Total $=3 \mathrm{mk}$

(2 mark)
(a)Calculate the average volume of solution L used

$$
\frac{12.5+12.5+12.5}{3}=\underline{12.5} \mathrm{~cm} 3
$$

(b)Calculations:
(i)How many moles of sodium hydroxide solution P were contained in the average volume? (1mark)

$$
\begin{aligned}
\text { Moles } & =\frac{\text { molarity of solution } P \times x \text { average burette volume }}{1000} \\
& =\frac{0.1 \text { molesl }^{-1} \times 24.9}{1000}=\underline{0.00249} / \underline{2.49 \times 10^{-3}} \mathrm{moles}
\end{aligned}
$$

(ii)Given that NaOH solution P reacted with the ethanedioate ions from the acid only and the equation for the reaction is:
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \quad \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

PDF Eraser Free

Calculate the number of moles of ethanedioic acid that were used in the reaction. (1 mk)
From the stoichiometric equation,mole ratio

$$
\begin{aligned}
& \mathrm{NaOH}(\mathrm{aq}): \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})=2: 1 \\
\Rightarrow> & \text { moles } \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=1 / 2 \text { moles } \mathrm{NaOH} \\
=> & 1 / 2 \times 0 \times 0.00249 / 2.49 \times 10^{-3} \mathrm{moles} \\
& \underline{0.001245 / 1.245 \times 10^{-3}} \text { moles. }
\end{aligned}
$$

(iii)How many moles of ethanedioic acid were contained in 250 cm 3 of solution N ? (1mark)
25 cm 3 pipette volume $\quad->\quad 0.001245 / 1.245 \times 10^{-3}$ 250 cm 3

$$
->\frac{0.001245 / 1.245 \times 10^{-3} \text { moles } \times 250}{25}
$$

$=\underline{0.01245 / 1.245 \times 10^{-2}}$ moles
(iii)Determine the $\%$ by mass of sodium ethanedioate in the mixture
($\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{C}=12.0$ and total mass of mixture $=2.0 \mathrm{~g}$ in 250 cm 3 solution) (1 mark)
Molar mass $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\mathbf{9 0 . 0 g}$
Mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in $250 \mathrm{~cm} 3=$
moles in $250 \mathrm{~cm} 3 \times$ molar mass $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$=>0.01245 / 1.245 \times 10^{-2}$ moles $\times 90.0$
$=\underline{1.1205} \mathrm{~g}$
\% by mass of sodium ethanedioate
$=\left(\right.$ Mass of mixture - mass of $\left.\mathrm{H}_{2} \underline{\mathrm{C}}_{2} \underline{\mathrm{O}}_{4}\right) \times 100 \%$
Mass of mixture
$\Rightarrow \frac{2.0-1.1205 \mathrm{~g}}{2.0}=\underline{43.975 \%}$
2. You are provided with 5.0 g solid B. You are to determine the molar mass of solid B.

Procedure

Place 100cm3 of liquid L into a plastic beaker. Determine its temperature and record it at time $=0$ in Table 2 below. Stir continuously using the thermometer and record the highest temperature change to the nearest $0.5^{\circ} \mathrm{C}$ after every 30 seconds. After 120 seconds, add all solid B. Continue stirring and recording the temperature to table 2.

Table 2

Time (seconds)	0.0	30	60	90	120	150	180	210	240	270	300
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{2 0}$	$\mathbf{2 0}$	$\mathbf{2 0}$	$\mathbf{2 0}$		$\mathbf{1 8}$	$\mathbf{1 6}$	$\mathbf{1 4}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$

Table 2 $\mathrm{CT}={ }^{1} / 2 \mathrm{mk}$ $D P=1 / 2 \mathrm{mk}$ $A C=1 / 2 \mathrm{mk}$ $T R={ }^{1}=2 \mathrm{mk}$ Total $=2 \mathrm{mk}$

PDF Eraser Free

(a)Plot a graph of temperature against time(x -axis)(3marks)

```
Graph
Scale(plots cover over \({ }^{1} / 2\) graph paper ) \(=1 / 2 \mathrm{mk}\)
Labelling(both axis) \(=1 / 2 \mathrm{mk}\)
Plotting all points \(=1 \mathrm{mk}\)
Shape(Extrapolated graph)=1mk
Total \(=3 \mathrm{mk}\)
```

(b)From the graph show and determine (2 mark)
(i) the highest temperature change $\Delta \mathrm{T}$

$$
\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1} \quad \Rightarrow \quad 13.4-20=6.6^{\circ} \mathrm{C}
$$

Note ΔT is not $\quad-6.6^{\circ} \mathrm{C}$
(ii) the temperature of the mixture at 130 seconds

From extrapolation at 130 seconds $=19.2^{\circ} \mathrm{C}$
(iii)the time when all the solid first dissolved From extrapolation of the lowest temperature $=\underline{220}$ Seconds

PDF Eraser Free

(d) Calculate the heat change for the reaction.(Assume density of liquid L is $1.0 \mathrm{gcm}^{-3}$) specific heat capacity is $4.2 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ (1 mark)

$$
\Delta H=\text { mass of liquid } L \times \mathrm{c} \times \Delta \mathrm{T}=>100 \times 4.2 \times 6.6=+\underline{2772} \underset{1000}{\mathrm{~J}}=+\underline{2.772} \mathrm{~kJ}
$$

(e) Given the molar enthalpy of dissolution of Solid B in liquid L is +22.176 kJ mole ${ }^{-}$ ${ }^{1}$,determine the number of moles of B used (1mark)
Moles of $B=\underline{\Delta H} \quad \Rightarrow \quad+\underline{\mathbf{H}} \mathbf{7 7 2} \mathrm{kJ} \quad=\underline{\mathbf{0 . 1 2 5} \text { moles }}$ $\Delta \mathrm{Hs} \quad+22.176 \mathrm{~kJ} \mathrm{~mole}^{-1}$
(f)Calculate the molar mass of B (1mark)
Molar mass of $B=\underline{\text { Mass used }} \quad=>5.0 \quad=40 \mathrm{~g}$

Moles used

$\mathbf{0 . 1 2 5}$ moles

3(a)You are provided with solid Y. Carry out the following tests and record your observations and inferences in the space provided.
(i) Appearance

Observations
(1mark)
White crystalline solid
inference
Coloured $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Cu}^{2+}$ ions absent
(ii)Place about a half spatula full of the solid into a clean dry boiling tube. Heat gently then strongly.

Observations

inference

(1mark)
Colourless droplets forms on the cooler parts of test tube
Solid remain white
Hydrated compound/salt
(ii)Place all the remaining portion of the solid in a test tube .Add about 10 cm 3 of distilled water. Shake thoroughly. Divide the mixture into five portions.

Observation
(1mark)
Solid dissolves to form a colourless solution absent

Inference

Coloured $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Cu}^{2+}$ ions
I. To the first portion add three drops of universal indicator.

Observation
$\mathrm{pH}=4$

Inference

 weakly acidic solution
PDF Eraser Free

II.To the second portion, add three drops of aqueous ammonia then add excess of the alkali.

Observation

(1mark)
White ppt, insoluble in excess

Inference

$$
\mathbf{A l}^{3+}, \mathbf{P b}^{2+}
$$

III.To the third portion, add three drops of sodium sulpide solution.

Observation
(1mark)
No black ppt

Inference
Al^{3+}
IV.To the fourth portion, add three drops of acidified Lead(II)nitrate(IV)solution. Heat to boil

Observation

(1mark)
White ppt, persist/remains on boiling

Inference

$\mathrm{SO}_{4}{ }^{2-}$
(b)You are provided with solid P. Carry out the following tests and record your observations and inferences in the space provided.
(i)Place a portion of solid P on a clean metallic spatula and introduce it on a Bunsen flame.
$\underline{\text { Solid burns with a yellow sooty flame }} \left\lvert\,-\mathbb{Y}=\mathrm{F}-/ /-\mathrm{C} \equiv \mathrm{C}-\begin{gathered}\left(\frac{1}{2} 2 \mathrm{mark}\right) \\ \text { bonds }\end{gathered}\right.$
(ii)Add all the remaining solid to about 10 cm 3 of water in a test tube and shake well. Divide the mixture into 4 portions. $(1 / 2$ mark $)$
Solid dissolves to form a clourless solution
Polar organic compound
I. To the $1^{\text {st }}$ portion, test with litmus papers ($1 / 2$ mark)

Red litmus paper remain red

$$
\mathrm{H}^{+} \text {ions }
$$

Blue litmus paper turn blue

PDF Eraser Free

II. To the $2^{\text {nd }}$ portion, add a little sodium hydrogen carbonate $\left(\frac{1}{2}\right.$ mark)

Effervescence/fizzing/bubbles

Colourless gas produced
III.To the $3^{\text {rd }}$ portion, and three drops of solution M . $\operatorname{Warm}(1 / 2$ mark $)$

Acidified KMnO_{4} is decolorized $\mathrm{R}-\mathrm{OH}, \mathrm{C}=\mathrm{C}-\quad \mathrm{C} \equiv \mathrm{C}-$ bonds
// solution M is decolorized
IV.To the $4^{\text {th }}$ portion, add three drops of bromine water (${ }^{1} /{ }_{2}$ marks)

Bromine water is decolorized $\quad \mathrm{Cl}_{\mathrm{I}}^{\mathrm{l}}=\underset{\mathrm{l}}{\mathrm{C}} / / \stackrel{\mathrm{C}}{=} \mathrm{C} \quad$ bonds

233/3 CHEMISTRY
Pre-KCSE 2013
Practice 1
Moi High School-Mbiruri

Requirements for each Candidates:

0.05 M Oxalic acid labeled Solution L
0.01 M Potassium manganate (VII) labeled Solution M
0.03 M oxalic acid labeled Solution \mathbf{N}
0.1M Sodium hydroxide labeled Solution P
1.0 M sulphuric(VI)acid.

150 cm 3 distilled water labeled Liquid L
50 cm 3 burette
25 cm 3 pipette
Two clean conical flasks
Pipette filler
$-10-110^{\circ} \mathrm{C}$ Thermometer
Stop watch/clock
200 cm 3 clean beaker
5.4g ammonium chloride $/ \mathbf{8 . 0 g}$ Ammonium nitrate(V) labeled Solid B weighed accurately
About 2.0 g of hydrated Aluminium sulphate labeled Solid Y
About 2.0 g of Citric acid labeled Solid P
One boiling tube
Six clean dry test tubes
Pair of litmus papers(red and blue)
Clean metallic spatula
Access to bench reagents/apparatus
Means of heating
2 M aqueous ammonia
0.1 M acidified Lead(II)nitrate(V)

Bromine water
0.1 M sodium sulphide

About 0.1 g Sodium hydrogen carbonate
Universal indicator solution
pH chart

PDF Eraser Free

Name Index Number \qquad
233/3
CHEMISTRY
Paper 3
PRACTICAL
Practice 2012
$21 / 4$ hours
You are provided with :

- Solution A containing an oxidizing agent A;
- Solution B, 0.05 M aqueous sodium thiosulphate;
- Solution C containing a reducing agent C ;
- Aqueous Potassium iodide;
- Solution D, starch solution.

You are required to determined the:
Concentration of solution A
Rate of reaction between the oxidizing agent A and the reducing agent C .

Procedure 1

1. Using a pipette and pipette filter ,place 25.0 cm 3 of solution A into a 250 ml conical flask.
2. Meassure 10 cm 3 of aqueous potassium iodide and add it to solution A in the conical flask.
Shake the mixture .Add 10 cm 3 of 2 M sulphuric(VI)acid to the mixture and shake.
3. Fill a burette with solution \mathbf{B} and use it to titrate the mixture in the conical flask until it just turns orange yellow. Add 2 cm 3 of solution D to the mixture in the conical flask. Shake thoroughly. Continue titrating until the mixture just turns colourless. Record your results in table 1 below.
4. Repeat the procedure and complete table 1.Retain the remainder of solution \mathbf{A} and \mathbf{D} for use in procedure II
Table I

	I	II	III
Final burette reading	20.0	20.0	20.0
Initial burette reading	0.0	0.0	0.0
Volume of solution B used (cm3)	20.0	20.0	20.0

PDF Eraser Free

(a)Calculate the:
(i) average volume of solution B used (1 mk)

$$
\frac{20.0+20.0+20.0}{3} V=\underline{20.0} \sqrt{ } \underline{\mathrm{~cm} 3}
$$

(ii)number of moles of sodium thisulphate(1 mk)

$$
\begin{aligned}
\text { Moles } & =\frac{\text { molarity } \times \text { burette volume }}{1000} \\
& =>\frac{\mathbf{0 . 0 5 \times 2 0 . 0}}{1000} \mathrm{~V}=\underline{0.001} / \underline{\mathbf{1 . 0} \times 10^{-3}} \sqrt{ } \mathrm{moles}
\end{aligned}
$$

(b)Given that one mole of A reacts with six moles of sodium thiosulphate ,calculate the:
(i)number of moles of A that were used (1 mk)

$$
\begin{aligned}
& \text { Mole ratio } \mathrm{A}: \mathrm{B}=1: 6 \mathrm{~V} \\
& \Rightarrow \text { Moles } \mathrm{A}=\frac{0.001}{6} / \underline{1.0 \times 10^{-3}} \text { moles }=\underline{0.00016 / 1.6 \times 10^{-4}} \sqrt{ } \underline{\text { moles }}
\end{aligned}
$$

(ii)concentration of solution A in moles per litre (2 mk)

Molarity of solution $A=\underline{\text { moles } \times 1000}$
Pipette volume

$$
\Rightarrow 0.00016 / 1.6 \times 10-4 \text { moles } \times 1000 ~ V=\underline{0.008 / 8.0 \times 10^{-4} \mathrm{M}} \sqrt{ }
$$

$$
20
$$

Procedure II

1. Label six test tubes as $1,2,3,4,5$ and 6 and place them on a test tube rack.
2. Using a clean burette, measure the volumes of distilled water as shown in table 2 into the labeled test tubes.
3. Using a burette ,measure the volumes of solution A shown in table 2 into each of the test tubes .
4. Clean the burette and rinse it with about 5 cm 3 of solution C
5. Using the burette , measure 5 cm 3 of solution C and place it into a 100 ml beaker.
6. Using a 10 ml measuring cylinder , measure 5 cm 3 of solution D and add it to the beaker containing solution C.Shake the mixture.
7. Pour the contents of test tube number 1 to the mixture in the beaker and immediately start off stop watch/clock. Swirl the contents of the beaker.Record the time taken for a blue colour to appear in table 2.
8. Repeat steps 5 to 7 using the contents of test-tube $2,3,4,5$ and 6 .
9. Complete table 2 by computing Rate $=\frac{1}{\text { Time }}\left(\mathrm{S}^{-1}\right)$

Table 2(Sample results)

Test-tube number	1	2	3	4	5	6
Volume of distilled water(cm3)	0	2	3	5	6	7
Volume of solution A(cm3)	10	8	7	5	4	3
Time(seconds)	40.0	60.0	70.0	90.0	100.0	110.0
Rate $=\quad \frac{1}{\text { time }\left(S^{-1}\right)}$	0.025 2.5×10^{-2}	0.0167 1.67×10^{-2}	0.0143 1.43×10^{-2}	0.0111 1.11×10^{-2}	0.0 .1 1.11×10^{-2}	0.0083 8.3×10^{-3}

Plot a graph of rate(y -axis)against volume of solution $\mathrm{A}(3 \mathrm{mk}$)
Sketch graph of rate against time

PDF Eraser Free

(b)What time would be taken for the blue colour to appear if the experiment was repeated using 4 cm 3 of distilled water and 6 cm 3 of solution A ?(2 mk)

From a correctly plotted graph
$1 / \mathrm{t}$ at $6 \mathrm{~cm} 3=0.0125 \sqrt{ } \Rightarrow \quad t=1 / 0.0125=80$ seconds $\sqrt{ }$
2. You are provided with solid E. Carry out the experiments below. Write your observations and inferences in the spaces provided
(a)Place all solid in a boiling tube .Add 20 cm 3 of distilled water and shakeuntil all the solid dissolves.Label the solution as solution E.Use solution E for experiment (i)and (ii)
(i)To 2 cm 3 of solution E in a test tube in each of experiment I,II,III and IV add:
I. two drops of aqueous sodium sulphate(VI)

Observation(1mk)	Inferences(1mk) White precipitate	Pb^{2+}
Ba^{2+}	Ca^{2+}	

II.five drops of aqueous sodium chloride

Observations (1mk)
White ppt
III.two drops of barium chloride

Observations(1mk)
No white ppt

Inferences(1mk)

$$
\mathrm{Ca}^{2+} \mathrm{Ba}^{2+}
$$

\qquad

$$
\mathrm{SO}_{4}{ }^{2-} \mathrm{SO}_{3}{ }^{2-} \quad \mathrm{CO}_{3}{ }^{2-}
$$

IV .two drops of lead(II)nitrate(V)

Observations(1mk)
No white ppt

Inferences(1mk)
Cl^{-}

PDF Eraser Free

(ii) To 2 cm 3 of solution E in a test tube , add 5 drops of aqueous sodium hydroxide .Add the piece of aluminium foil provided to the mixture and shake. Warm the mixture and test any gas produced with both blue and red litmus papers

Observations(1mk)

Blue litmus paper remain blue
Red limus paper turn blue
Effervescence /fizzing/ bubbles

Inferences(1mk)

$\mathrm{NO}_{3}{ }^{-}$

Note:

Solid \mathbf{E} is Calcium nitrate (\mathbf{V}) / Barium nitrate(V)
3. You are provided with solid F. Carry out the following test.Write your observations and inferences in the spaces provided.
(a)Place all of solid F in a boiling tube. Add about 20 cm 3 of distilled water and shake until all the solid dissolves. Label the solution as solution F.

Add about half of the solid sodium hydrogen carbonate provided to 2 cm 3 of solution F Observations(1mk)

No effervescence/fizzing

$$
\mathrm{H}^{+} \text {absent }
$$

(b)(i)Add about 10 cm 3 of dilute hydrochloric acid to the rest of solution F in the boiling tube. Filter the mixture. Wash the residue with about 2 cm 3 of distilled water.Dry the residue between filter papers. Place about one third of the dry residue on a metallic spatula and burn it in a Bunsen burner flame.

Observations(1mk)
Solid burns with a yellow sooty flame
(ii)Place all the remaining residue into a boiling tube. Add about 10 cm 3 of distilled water and shake thoroughly. Retain the mixture for the tests in (c)

Inferences(1mk)

Observations ($1 / 2 \mathrm{mk}$)

Solid dissolves to a colourless solution

Inferences $(1 / 2 \mathrm{mk})$
Polar compound

PDF Eraser Free

(c)Divide the mixture into two portions:
(i)to the first portion , add the rest of the solid sodium hydrogen carbonate Observations (1mk)

Effervescence/fizzing

$$
\mathbf{H}^{+}
$$

(ii)to the second portion , add two drops of bromine water. Observations (1mk)

Bromine water decolorized

Inferences(1mk)

The other documents available on this website include;

* All secondary school schemes of work.
* Form 1-form 4 revision papers in all subjects.
* Marking schemes to most of the revision papers.
* K.C.S.E past papers.
* University past papers.

PDF Eraser Free

* K.A.S.N.E.B past papers e.g. C.P.A
* Primary school schemes of work.
* Primary school revision papers to all classes.
* Marking schemes to primary school past papers.
* K.C.P.E past papers.

[^0]: jgthungu@gmail.com

[^1]: Table 1
 $\mathrm{CT}=1 / 2 \mathrm{mk}$
 $D P=1 / 2 \mathrm{mk}$
 $A C=1 / 2 \mathrm{mk}$
 $A V=1 \mathrm{mk}$
 $\mathrm{FA}={ }^{1} / 2 \mathrm{mk}$
 Total $=3 \mathrm{mk}$

