MATHEMATICS
 PAPER 1

P1 Q1.
Without using a calculator evaluate, $-2(5+3)-9 \div 3+5$ (3 mks) Answer

$$
\frac{-2(5+3-9+3+5}{-3 x^{-} 5+(-2) \times 4}=\frac{-14}{7}=-2
$$

P1 Q 2
Simplify

$$
\frac{p^{2}+2 p q+q^{2}}{p^{3}-p q^{2}+p^{2} q-q^{3}}
$$

Answer

$$
\begin{aligned}
& \frac{(p+q)(p+q)}{p\left(p^{2}-q^{2}\right)+q\left(p^{2}-q^{2}\right)} \\
& =\frac{(p+q)(p+q)}{(p+q)(p+q)(p-q)} \\
& =\frac{1}{p+q}
\end{aligned}
$$

P1 Q 3

The external length, width and height of an open rectangular container are 41 cm , 21 cm and 15.5 cm respectively. The thickness of the material making the container is 5 mm . If the container has 8 litres of water, calculate the internal height above the water level. (4 mks)

Answer

Internal Dimensions: 40, 20 and 15
Volume unoccupied $=40 \times 20 \times 15-8000$

$$
=4000
$$

Height above water level $=\frac{4000}{40 \times 20}=5 \mathrm{~cm}$

The figure below shows a net of a solid. (measurements are in cen MANYAM FRANCHISE

Below is a part of the sketch of the solid whose net is shown above. Complete the sketch of the solid, showing the hidden edges with broken lines.
(3 marks

Answer

Given that $\mathbf{O A}=2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{O B}=3 \mathbf{i}-2 \mathbf{j}$. Find the magnitude of $\mathbf{A B}$ to Manyam Franchise (3 marks)

Answer

$$
\begin{aligned}
& \binom{3}{-2}-\left(\frac{2}{3}\right) \\
& =\binom{1}{-5} \\
& \text { magnitude }=\sqrt{1^{2}+(-5)^{2}} \\
& \quad=\sqrt{26} \simeq 5.1
\end{aligned}
$$

P1 Q6
A bus travelling at an average speed of $63 \mathrm{~km} / \mathrm{h}$ left a station at $8.15 \mathrm{a} . \mathrm{m}$. A car later left the same station at $9.00 \mathrm{a} . \mathrm{m}$. and caught up with the bus at $10.45 \mathrm{a} . \mathrm{m}$. Find the average speed of the car.

Answer
Distance covered by bus
$=63 \times(10.45-8.15)$
$=\quad 63 \times 2.5$
$=157.5$
Speed of car
$=\frac{157.5}{1.75}$
$=\quad 90 \mathrm{~km} / \mathrm{h}$

P1 Q7
Given that x is an acute angle and $\cos x=\frac{2 \sqrt{5}}{5}$, find without using mathematical tables or a calculator, $\tan (90-x)$. $\quad(2$ marks)

Answer

$$
\begin{aligned}
& l^{2}=5^{2}-\left(2 \sqrt{5)^{2}}=5\right. \\
& l=\sqrt{5} \\
& \therefore \tan (90-x)^{\circ}=\frac{2 \sqrt{5}}{\sqrt{5}} \text { or } 2
\end{aligned}
$$

Without using mathematical tables or a calculator, evaluate
$27^{\frac{3}{3}} \times\left(\frac{81}{16}\right)^{-\frac{1}{4}}$.
Answer

$$
\begin{aligned}
27^{\frac{2}{3}} \times\left(\frac{81}{16}\right)^{-\frac{1}{4}} & =\left(3^{3}\right)^{2} \times\left(\frac{3^{4}}{2^{4}}\right)^{-\frac{1}{4}} \\
& =3^{2} \times\left(\frac{3}{2}\right)^{-1} \\
& =3^{2} \times \frac{2}{3} \\
& =6
\end{aligned}
$$

P1 Q 9

A minor arc of a circle subtends an angle of 105° at the centre of the circle. If the radius of the circle is 8.4 cm , find the length of the major arc. (Take $\pi=\frac{22}{7}$) (3 marks)

Answer

$$
\begin{aligned}
& \begin{aligned}
& \text { Angle for major arc }=360-105 \\
&=255^{\circ} \\
&\left.\begin{array}{rl}
\text { Length of arc }= & \frac{255}{360}
\end{array}\right) \times 2 \times 8.4 \times \frac{22}{7} \\
&= 37.4 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

P1 Q10
The gradient of the tangent to the curve $y=a x^{3}+b x$ at the point $(1,1)$ is -5 .
Calculate the values of a and b (4 marks)
Answer

$$
\begin{aligned}
& \frac{d y}{d x}=3 \mathrm{ax}^{2}+\mathrm{b} \\
& 3 \mathrm{a}+\mathrm{b}=-5 \\
& \mathrm{a}+\mathrm{b}=1 \\
& \mathrm{a}=-3 \\
& \mathrm{~b}=4
\end{aligned}
$$

A line with gradient of -3 passes through the points $(3, k)$ and $(k, 8)$. гnu wie vanue of k and hence express the equation of the line in the form of $a x+b y=c$, where a, b, and \mathbf{c} are constants.

Answer

$$
\begin{aligned}
& \frac{k-8}{3-k}=\frac{-3}{1} \\
& \frac{k-8}{2 k}=-9+3 k \\
& \quad K=1 / 2 \\
& \frac{y-8}{x-1 / 2}=\frac{-3}{1} \\
& y-8=-3(x-1 / 2) \\
& y-8=-3 x+\frac{3}{2} \\
& 2 y-16=6 x+3 \\
& 6 x+2 y=19
\end{aligned}
$$

P1 Q 12
Points L and M are equidistant from another point K. The bearing of L from K is 330°. The bearing of M from K is 220°. Calculate the bearing of M from L marks)

> Answer
> $\angle \mathrm{LKM}=110^{\circ}$
> $\angle \mathrm{KLM}=35^{\circ} \mathrm{OR} \mathrm{KML}=35^{\circ}$
> Bearing is 185°

P1 Q 13
In this question, mathematical tables should not be used.
A Kenyan bank buys and sells foreign currencies as shown below

Buying
(In Kenya shillings)
1 Hong Kong dollar

$$
9.74
$$

1 South African rand
12.03
12.11

A tourist arrived in Kenya with 105000 Hong Kong dollars and changed the whole amount to Kenyan shillings. While in Kenya, she spent Kshs 403 897 and changed the balance to South African rand before leaving for South Africa. Calculate the amount, in South African rand that she received. (3 marks)

Answer
105000×9.74
$=\operatorname{sh} 1022700$
1022700-403879
12.11
$=\underline{618821}$
12.11
$=51100$ rands

A small cone of height 8 cm is cut off from a bigger cone to leave height 16 cm . If the volume of the smaller cone is 160 cm 3 , find the volume of the frustum (3marks)

Answer

$$
\begin{aligned}
& \text { L.S.F. }=8: 24=1: 3 \\
& \text { V.S.F }=1: 27 \\
& \begin{aligned}
\text { Volume of frustum } & =160 \times 27-160 \\
& =4160 \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

PP1 Q 15
The production of milk, in litres, of 14 cows on a certain day was recorded as follows: 22, 26, 15, 19, 20, 16, 27, 15, 19, 22, 21, 20, 22 and 28.
Determine:
(a) the mode;
(1 mark)
Answer
Mode
$=22$
(b) the median.
(2 marks)
Answer
Median
$15,15,16,19,19,20,20,21,22,22,22,26,27,28$
median $=\frac{20+21}{2}$
$=20.5$

P1 Q 16

Given that $\log 4=0.6021$ and $\log 6=0.7782$, without using mathematical tables or a calculator, evaluate $\log \mathbf{0 . 0 9 6}$.

Answer

$$
\begin{aligned}
\log 0.096= & \log \left(4^{2} \times 6 \times 10^{-3}\right) \\
= & 2(0.6021)+\overline{3} .7782 \\
= & \overline{2} .9824 \text { or } \\
& (-1.0176)
\end{aligned}
$$

P1 Q 17
(a) Solve the equation, $\frac{x+3}{24}=\frac{1}{x-1} \quad$ (4 marks) Answer

$$
X=5 \text { or }-6
$$

(b) The length of a floor of a rectangular hall is $9 \mathbf{m}$ more than area of a floor is 136 m 2 .
(i) Calculate the perimeter of the floor. (4 marks)

Answer
50 m
(ii) A rectangular carpet is placed on the hall leaving an area of 64 m 2 . If the length of the carpet is twice its width, determine the width of the carpet. (2 marks)

Answer
$6 m$

PP No. 18.
Three business partners: Asha, Nangila and Cherop contributed Ksh 60 000, Ksh 85000 and Ksh 105000 respectively. They agreed to put 25% of the profit back into business each year. They also agreed to,put aside 40% of the remaining profit to cater for taxes and insurance. The rest of the profit would then be shared among the partners in the ratio of their contributions.
At the end of the first year, business realized a gross profit of Ksh 225000
(a) Calculate the amount of money Cherop received more than Asha at the end of the first year.
(5 marks)
$\begin{aligned} \text { Answer } & \\ & \% \text { Profit for taxes and insurance } \\ & =\frac{40}{100} \times \frac{75}{100} \\ & \text { Amount shared } \\ & =\frac{100-(25+30)}{100} \times 225000 \\ & =\frac{45}{100} \times 225000 \\ & =101250 \\ & \text { Amount Cherop received more than Asha: Ratio of contribution } \\ & 60000: 85000: 105000 \\ & 12 \\ & \frac{21-17}{50} \times 101250 \\ & =18225\end{aligned}$
(b) Nangila further invested Ksh 25000 into the business at the beginning of the second year. Given that the gross profit at the end of the second year increased in the ratio 10:9, calculate Nangila's share of the profit at the end of the second year.

Answer

Profit during $2^{\text {nd }}$ year:
$225000 \times \frac{10}{9}$
$=250000$
Nangila's new ratio:

$$
=\frac{110000}{275000}=\frac{2}{5}
$$

\therefore Nangila's New Share of Profit
$=\frac{2}{5} \times 112500$
$=45000$

P1 Q19
The frequency table below shows the daily wages paid to casual workers by a certain company

Wages in shillings	$100-150$	$150-200$	$200-300$	$300-400$	$400-600$
No. of workers	160	120	380	240	100

a) Draw a histogram to represent the above information. (5 marks)

Answer

Frequency (f)	160	120	380	240	100
Class width(c)	50	50	100	100	200
Freq. density(f/c)	3.2	2.4	3.8	2.4	0.5

(b)(i)State the class in which the median wage lies. (1 mark)
median class: 200-300
(ii)Draw a vertical line, in the histogram, showing where the median wage lies. (1 mark!

Answer
Shown by dotted line (257.895)
(c) Using the histogram, determine the number of workers who earn sh 450 or less per day. (3 mark;

Answer

Number of workers who earn Sh. 450 or less per day $=900+50 \times 0.5=925$
P1 Q 20
In the diagram below, the coordinates of points A and B are $(1,6)$ and $(15,6)$ respectively). Point N is on $O B$ such that $3 O N=2 O B$. Line $O A$ is produced to L such that $\mathrm{OL}=3 \mathrm{OA}$

a) Find vector LN
(3 marks)
Answer

$$
\begin{aligned}
O L & =3\binom{1}{6} \\
& =\binom{3}{18} \\
O N & =\frac{2}{3}\binom{15}{6} \\
& =\binom{10}{4} \\
L N & =O N-O L \\
& =\binom{10}{4}-\binom{3}{18} \\
& =\binom{7}{-14}
\end{aligned}
$$

(b)Given that a point M is on LN such that LM: MN $=3: 4$, fin MANYAM FRANCHISE of (2 marks) Answer

$$
\begin{aligned}
& O M=O L+\frac{3}{7} L N \\
& =\binom{3}{18}+\frac{3}{7}\binom{7}{-14} \\
& =\binom{3}{18}+\binom{3}{-6} \\
& =\binom{6}{12} \\
& =M(6,12)
\end{aligned}
$$

(c)If line OM is produced to T such that OM : $\mathrm{MT}=\mathbf{6 : 1}$
(i) Find the position vector of T (1 mark)

Answer

$$
\begin{aligned}
O T & =\frac{7}{6} O M \\
& =\frac{7}{6}\binom{6}{12} \\
& =\binom{7}{14}
\end{aligned}
$$

(ii) Show that points L, T and B are collinear (4 marks) Answer

$$
\begin{aligned}
L T & =\binom{7}{14}-\binom{3}{18} \\
& =\binom{4}{-4} \\
L B & =\binom{15}{6}-\binom{3}{18} \\
& =\binom{12}{-12} \\
L B & =3 L T
\end{aligned}
$$

L is the common point.
(a) The ratio of Juma's and Akinyi's earnings was 5: 3. Juma's e.................... Ksh 8400 after an increase of 12%. Calculate the percentage increase in Akinyi's earnings given that the sum of their new earnings was Ksh 14100 . (6 marks) Answer

Juma's earnings before increase:
$112 \% \rightarrow 8400$
$100 \% \rightarrow 8400 \times \frac{100}{112}$
$=7500$
Akinyi's carnings before increase:
$\frac{3}{5} \times 7500=4500$
Increase in Akinyi's earnings

$$
14100-8400-4500
$$

$$
=1200
$$

$\%$ increase in Akinyi's earnings

$$
\begin{aligned}
\frac{1200}{4500} & \times 100 \\
& =262 / 3
\end{aligned}
$$

(b) Juma and Akinyi contributed all the new earnings to buy maize at Ksh 1175 per bag. The maize was then sold at Ksh 1762.50 per bag. The two shared all the money from the sales of the maize in the ratio of their contributions. Calculate the amount that Akinyi got.
(4 marks)

Answer

> No. of bags bought
> $\frac{14100}{1175}$
> $=12$ bags
> Profit $=(1762.50-1175) \times 12=7050$
> Ratio $\quad 5700: 8400=19: 28$

Profit for Akinyi $:=7050 \times \frac{19}{47}=2850$
Total carning for Akinyi:
$5700+2850$
$=8550$

Using a pair of compasses and ruler only, construct a quadrilateral A.
$\mathrm{AB}=\mathbf{4 \mathrm { cm }}, \mathrm{BC}=\mathbf{6 \mathrm { cm }}, \mathrm{AD}=\mathbf{3 \mathrm { cm }}$, angle $\mathrm{ABC}=135^{\circ}$ and angle $\mathrm{DAB}=60^{\circ}$. Measure the size of angle $B C D$.

Answer

Construction of 135° angle between
lines $\mathrm{AB}=4 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$
Construction of 60° angle between lines
$\mathrm{AB}=4 \mathrm{~cm}$ and $\mathrm{AD}=3 \mathrm{~cm}$
Completion of quadrilateral ABCD

$$
\angle B C D=31^{\circ} \pm 1^{\circ}
$$

P1 Q 23
The equation of a curve is $y=2 x^{3}+3 x^{2}$.
(a) Find:
(i) The x-intercept of the curve; (2 marks)

Answer

x - intercepts

$$
\begin{aligned}
& \text { when } \mathrm{y}=0 \\
& x^{2}(2 x+3)=0 \\
& x=0 \text { and } x=-\frac{3}{2}
\end{aligned}
$$

(ii) The y - intercept of the curve;
(1 mark)
Answer
y - intercept
when $\mathrm{x}=0, \mathrm{y}=0$
(b)(i)Determine the stationary points of the curve.(3 marks)

Answer
stationary points of curve
$\frac{d y}{d x}=6 x^{2}+6 x$
stationery points when $\frac{d y}{d x}=0$
i.e. $6 x^{2}+6 x=0$
$6 x(x+1)=0$
$x=0$ or $x=-1$
\therefore stationary points are:
$(0,0)$ and $(-1,1)$
(ii) For each points in (b) (i) above, determine whether it is a maximum or minimum, (3 marks)

Answer

x	-2	$-1 \frac{1}{2}$	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
$\frac{d y}{d x}$	12	$4 \frac{1}{2}$	0	$-1 \frac{1}{2}$	0	$4 \frac{1}{2}$	12

minimum point $(0,0)$
maximum point $(-1,1)$
(c) Sketch the curve. (2 marks)

Answer

points plotted at $\left(-1 \frac{1}{2}, 0\right),(-1,1)$ and $(0,0)$
smooth curve

Answer

x	0	1	2	3	4	5	6
$y=\frac{1}{2} x^{2}-x+3$	3	$21 / 2$	3	$41 / 2$	7	$101 / 2$	15

