4.7.2 Chemistry Paper 2 (233/2)

No.	Responses	Marks
1a	A – Fermentation √½ B – Dehydration √½ C – Addition polymerization / polymerization √½	
	D – Saponification √½	(2 marks)
b (i)	Process B Reagent – Concentrated sulphuric(VI) acid√1 Conditions – Temperature of 160°C - 180°C. √1 OR -Al ₂ O ₃	(2 marks)
	-A12O3 -Temperature 300 °C OR - H ₃ PO ₄ - warm	
(ii)	Process D Reagent – Potassium hydroxide ✓1 / Sodium hydroxide Condition -Boil ✓1/ Boiling	(2 marks)
(iii)	The vegetable oil is mixed with sodium hydroxide and boiled ✓1, Solid sodium chloride is added to the resulting mixture, to precipitate out the soap from glycerol. ✓1	(2 marks)
(iv)	Perfume √½ and builders / tetraoxophosphates / dye√½	(1 mark)
c (i)	Step F – acidified potassium manganate (VII) ✓1	(1 mark)
(ii)	Monomer G – Benzene – I, 4 - dioic acid ✓1 /HOOC—⟨O⟩— COOH ✓	(1 mark)
(iii)	$ \begin{array}{c c} \hline $	(1 mark)
d(i)	Polyethene / polythene ✓ 1	(1 mark)
(ii)	 It is non-biodegradable hence pollutes the environment; Produces poisonous gases when burnt. (Any one correct) 	(1 mark) (14 marks)

No.	Responses		1	Marks
2(a) (i)	K ✓ ½ and J ✓ ½			(1 mark)
(ii)	$K^+\checkmark$, $L^{2+}\checkmark$, $M^{3+}\checkmark$			(1 mark)
()	3 ions for 1 m			(1 mark)
	2 ions for ½ r	nark.		
	1 ion for 0 m	ark		
b(i)	$K_{(g)} \rightarrow K^{+}_{(g)} + e$ $\Delta H_{IE} = 494 \text{kJ/mol}$			
	$M_{(g)} \to M$	$^+_{(g)} + e$ $\Delta H_{IE} = 57$	7kJ/mol	(1 mark)
(ii)	Across the per	riod, size of atoms decreases t	herefore more energy required to remove	-
	electrons from	an atom in its gaseous state l	nence, 1st ionization energy for M will be	
	greater than th	at of K . ✓1		(1 mark)
	0	OD		
		OR	M / K has less protons than M.	1-
(iii)	$L_3I_2 \checkmark 1$	(1 morts)		
		X7' 1' 0		(1 mark)
(iv)	Being an inert gas, V is used in fluorescent tubes and bulbs √1 / arch welding			(1 mark)
c(i)	Group 7. ✓1 E	Because G can either lose an e	lectron to form G ⁺ or gain an electron to	
	form G⋅√1			(2 marks)
(ii)	J is more reactive than K because of increase in the size of atoms. As we go down the			,
			ctivity. Outer electrons do not experience	
	much nuclear attraction for bigger atoms.			(2 marks)
	OR	-		
0	Reactivity incr	eases down the group, effecti	ve nuclear attraction is greater in K than J /	
		of J is greater than that of K .	, and the proof of	
d(i)	Element	Formula of chloride	Nature of chloride solution	
	L	LCl ₂ ✓½	Neutral √½	
	M	$MCl_3 / M_2Cl_6 \checkmark \frac{1}{2}$	Acidic ✓½	(2 marks)
			18	
(ii)	Chloride of M	vaporizes easily because of w	eak van der Waals forces between its	
	dimer /. ✓1 Its	(2 marks)		
	break. ✓1	(14 marks)		
				(

No.	Respo	nses				Marks
3(a)		Experiment	Observations	Type of	Name of	-
	(i)	Heat candle wax strongly on a test tube.	It melts and solidifies on cooling. ✓1	change Temporary√½	Product Candle wax √½	
	(ii)	Anhydrous copper (II) sulphate is left exposed overnight.	Turns from white to blue ✓1	Temporary √½	Hydrated copper(II) sulphate √½	(6 montes)
	(iii)	Iron wool is soaked in tap water for two days.	Turns from grey to brown. ✓1	Permanent. √½	Hydrated Iron(III) oxide / rust. ✓½	(6 marks)
b(i)	Coloured water moves towards the flask. ✓1 Cold cloth contributes to decrease in temperature causing decrease ✓1 in volume; this creates a vacuum making the ink to move towards the flask. Charle's law ✓1				(2 marks) (1 mark)	
c (i) (ii) (iii) I	$W^+_{(aq)}, W_{2(g)} / Pt \checkmark 1$ $U, \mathcal{Z}, W_2, V, Y \checkmark 1$ $V^{2+}/V \text{ and } W^+/W_2 \checkmark 1$				(1 mark) (1 mark) (1 mark)	
TOII	e.m.f = $0.00 - (-0.40)\sqrt{\frac{1}{2}}$ = $+0.40 \text{ V}\sqrt{\frac{1}{2}}$				(1 mark)	
						(13 marks)
4a (i)	$Mg_{(s)}$	$H_2SO_{4(aq)} \rightarrow MgSO_{4(aq)}$	$H_{2(g)} + H_{2(g)} \checkmark 1$			(1 mark)
(ii)	To ensure all the acid was used up. ✓1				(1 mark)	
(iii)	When effervescence stops √½ and presence of unreacted magnesium. √½				(1 mark)	
(iv)	Saturated solution is one that cannot dissolve any more solute at a particular temperature. ✓ 1				(1 mark)	
(v)	Because magnesium sulphate is a hydrated salt 1 and evaporation to dryness causes it to lose it water of crystallization / crystals would not be formed because water of crystallization is lost through heating. 1				(2 marks)	
b (i)	$CaOCl_{2(s)} + 2HNO_{3(aq)} \longrightarrow Ca(NO_3)2_{(aq)} + Cl_{2(g)} + H_2O_{(l)}$			(1 mark)		
(ii)	Volume	of chlorine produced				; ; -
	Mass of	$CaOCl_2 = 40 + 16 + 71$				
		= 56 + 71				
		$= 127 \sqrt{\frac{1}{2}}$				

No.	Responses			Marks
	Moles of $CaOCl_2 = \frac{10}{127}$			
	Moles of $CaOCl_2 = mole$	10		
- 4	1 mole $Cl_2 = 22.4 \text{ dm}^3$	2.		4
	0.0787 = ?			(3 marks)
	$0.0787 \times 22.4 = 1.763 \text{ dm}^3 \checkmark 1$			
(c)		drochloric acid; √½		
	 Manufacture of PV 			(1 morts)
		assium chlorate(V);		(1 mark) (11marks)
	 Manufacture of car 			(IIIIai KS)
	 Manufacture of chl 	oroform.		
	(Any 2 correct @ ½ n		n	2
5a (i)	Concentrated sulphuric(VI) acid and sodium chloride. ✓1			(2 marks)
(ii)	Concentrated sulphuric(VI)	acid. ✓1		(1 monts)
(iii)	Grey Iron powder turns gree	en / solid glows red . ✓1		(1 mark) (1 mark)
(iv)	$Fe_{(s)} + 2HCl_{(g)} \rightarrow FeCl_{2(s)}$	$+H_{2(a)} \checkmark 1$		(1 mark)
	Open a bottle of concentrated ammonia and place it near $HCl_{(g)}$ dense white fumes of			
	NH_4Cl are observed.			(1 mark)
b (i)	Hydrogen gas. ✓1			(1 mark)
(ii)	To prevent an explosion since a mixture of hydrogen and oxygen explodes ✓ 1			(1 mark)
	to prevent suck back. ✓1		-	
	to increase surface area for	dissolution of hydrogen cl	hloride in water. ✓1	(2 marks)
d 7	The flame will go off.			(1 mark)
e (i)	Solution of hydrogen chloride gas in	blue litmus paper	Marble chips	
	Water	Turns red ✓½	Effervescence / gas bubbles ✓ ½	
	Methlybenzene	Remain blue √½	No effervescence ✓½	
h C Ir	In water the hydrogen chloride ionizes to form hydrogen ions and chloride ions. ✓½ The hydrogen ions turn blue litmus red and also react with marble chips to liberate carbon(IV) oxide hence effervescence. ✓½ In methylbenzene which is non polar, ✓½ HCl is not able to ionize since it is polar. ✓½ Therefore, negative results with blue litmus paper and marble chips.			(2 marks)
		paper und	minose omps.	(15 marks)

No.	Responses	Marks
6 a (i)	$Na_2CO_3.NaHCO_3.H_2O \checkmark 1$	(1 mark)
(ii)	Fractional crystallization. ✓1	(1 mark)
b (i)	Solvay process ✓1	(1 mark)
(ii)	Brine, ammonia, calcium carbonate and water ✓ 1	(2 marks)
(iii)	$NH_{3(g)} + CO_{2(g)} + H_2O_{(l)} \rightarrow NH_4HCO_{3(aq)} \checkmark 1$	(1 mark)
	$NH_4HCO_{3(aq)} + NaCl_{(aq)} \rightarrow NH_4Cl_{(aq)} + NaHCO_{3(s)} \checkmark 1$	(1 mark)
(iv)	Ammonia and Carbon(IV) oxide, water	(1 mark)
	(Any 2 correct @ ✓¹¹₂ mark)	
(v) I	Calcium hydroxide $\checkmark 1$ ($Ca(OH)_2$)	(1 mark)
II	Thermal decomposition ✓1	(1 mark)
(vi)	$NH_4Cl_{(aq)} + Ca(OH)_{2(s)} \rightarrow 2NH_{3(g)} + CaCl_{2(aq)} + H_2O_{(l)} \checkmark 1$	(1 mark)
(vii)	Uses of sodium carbonate	(2 marks)
	Glass making ✓1	
	● Paper industry ✓1	
	Sodium silicate in making detergents	(13 marks)
	(Any 2 correct @ 1 mark)	,