4.8.2 General Science Paper 2 (237/2)

SECTION A: BIOLOGY (34 marks)

1.	 Leaves modified into thorns/needles to minimize loss of water/transpiration; Have thick waxy cuticle to reduce the rate of transpiration; Curl surface to reduce surface exposed to transpiration; Have sunken stomata which accumulate water to reduce diffusion rate/reduce the surface area for transpiration; Have reversed stomata rhythm to reduce the rate of transpiration during the day; Some have shiny silvery hairs on the surface to reflect away 	
	excess heat;	, -
2	5 x1	(5 marks)
2.	- Ovary; - Testes;	
	2x1	(2 marks)
3.	(a) Progesterone	(2 marks)
	- Maintains pregnancy;	
	- Produces estrogen;	i.
	2x1	(2 marks)
	(b) Ovulation in femalesStimulates secretion of testosterone in males;Stimulates corpus luteum to secrete progesterone;	
	2x1	(2 marks)
4.	(a) E – Centromere;	(1 mark)
	F – Chromatids;	(1 mark)
	(b) 46; (c) Homologous chromosomes;	(1 mark)
5.	(a) A gene that is masked in the presence of a dominant allele (in	(1 mark)
	heterozygous state);	(1 mark)
	(b) Genetic constitution of an organism;	(1 mark)
6.	(a) G – Larval stage;	(1 mark)
	H – Pupa stage;	(1 mark)
	(b) That of a grasshopper is incomplete metamorphosis i.e. lacks the pupa stage;	(1 mark)
	 (c) – Ecdysone hormone/moulting hormone; - Moulting stimulating hormone; - Juvenile hormone; 1x1 	(1 mark)

	7.	(a) Growth – Permanent and irreversible increase in the amount of living matter in an organism;	(1 mark)
		(b) Development – Is the progressive change in the form, shape, behavior and complexity of an organism;	(1 mark)
	8.	 (a) (i) Homologous structures; (ii) Structures have similar basic form or common embryonic origin but modified to perform different functions in different 	(1 mark)
		organisms.	(1 mark)
		(b)(i) Comparative anatomy;(ii) Divergent evolution/Adaptive radiation;	(1 mark) (1 mark)
	9.	(a) (b) (c) (c) (d)	
		(i) Sensory neuron; (ii) Has a laterally positioned cell body;	(1 mark) (1 mark)
		(b) J – Insulates the axon to speed up impulse transmission; K – Transmit impulses away from this cell body to other neurons;	(1 mark) (1 mark)
	10.		(1 mark)
		(b) Hinge joint; (c)	(1 mark)
. 0. 1		L M	(1 mark)

SECTION B: CHEMISTRY (33 marks)

11.		
	A 24 14 14	
	c = c - c - c - H	
	> 9-6	(1 mark)
	E	
	a) 1, 2 – dicholopropane ✓¹	(1 mark)
	b) Addition reaction ✓¹	(1 mark)
12.	a) (i) Allotropes ✓¹	(1 mark)
	(ii) - Monoclinic / Beta Sulphur √¹/₂	
	- Rhombic ✓¹	(1 mark)
	b) Carbon√¹	(1 mark)
13.	a) $CaCO_{3_{(s)}} + 2HCl_{(aq)} \rightarrow CaCl_{2_{(aq)}} + CO_{2_{(s)}} + H_2O_{(l)} \checkmark^1$	(1 mark)
$ \pi $	b) X√¹- The gradient of the graph is steeper because of increased	(2 marks)
	surface area. ✓¹	
	c) - Concentration	
•	- Temperature	
-	- Catalyst	
	- Pressure (in the case of gases)	
1	(Any 1 correct – 1 mark)	(1 mark)
		į,
14.	a) Bauxite $(Al_2O_3.2H_2O)$	
	$\operatorname{Mica}\left(K_{2}Al_{2}Si_{6}O_{6}\right)$	
	Corundum (Al_2O_3)	
	(Any 2 correct @ 1 mark)	(2 marks)
	b) – to lower the melting point of aluminium oxide.	(1 mark)
		(1 111111)
		_

	c) - Duralumin is stronger than Aluminium	
	- Duralumin is harder than Aluminium / Duralumin is stronger	
	than Aluminium	
	(Any 2 correct @ 1 mark)	(2 marks)
15.	$4E_{(s)} + 3O_{2_{(s)}} \to 2A_2O_{3_{(s)}}$	(= ======)
\bowtie	Moles of Oxygen = $\left(\frac{11.5}{24}\right)$ = 0.4791 \checkmark ¹	
\geq	Moles of $\mathbb{E} = \left(\frac{4}{3} \times 0.4791\right) = 0.6388 \checkmark^{1}$	
5	R.A.M. of $\mathbf{E} = \left(\frac{17.25}{0.6388}\right) \sqrt{1/2}$	
	$=27.00\checkmark^{1}/_{2}$	
	OR	
	$11.5 \mathrm{dm}^3 = 17.25 \mathrm{g}$	
\Box	$72 \text{ dm}^3 = ?$	
\leq	$\left(72 \times \frac{17.25}{11.5}\right) \checkmark ^{1} = 108 \text{g} \checkmark ^{1} /_{2}$	ı
	$4A = 108\checkmark^{1}/_{2}$	
	$A = \frac{108}{4} \checkmark \frac{1}{2} = 27 \checkmark \frac{1}{2}$	(3 marks)
16.	a) C	(1 mark)
	b) C does not form scum with hard water hence does not waste soap.	(1 mark)
17.	a) The volume of a fixed mass of gas is directly proportional to the	
	temperature at constant pressure.	(1 mark)
	b) As the volume decreases, there is increases bombardment of	
	molecules against the walls of the container, \checkmark ¹ / hence increased	
	pressure. ✓¹	(2 marks)

18.	a) Carbon(IV) oxide; Nitrogen, Water vapour, SO ₂	
	(Any 2 correct @ 1/2 mark)	(1 mark)
	b) Vanadium(V) oxide	(1 mark)
	c) $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_3(g)$	(1mark)
	$H_2S_2O_7$	(1 mark)
19.	a) A solution whose concentration / molarity is known	(1mark)
SCHO	b) R.F.M. NaOH = 40 moles of NaOH = $\left(\frac{1 \times 250}{1000}\right) \checkmark \frac{1}{2} = 0.25 \checkmark \frac{1}{2}$ mass of NaOH = $(0.25 \times 40) \checkmark \frac{1}{2}$ = $10g\checkmark \frac{1}{2}$	
	OR $ \left(\frac{250 \times 40}{1000}\right) \checkmark 1^{1}/_{2} = 10g \checkmark ^{1}/_{2} $	(2 marks)
20.	a) The heat change that occurs when reactants are converted to products.	(1 mark)
	b)	
	$\frac{1}{2}$ $\frac{1}$	
	Reaction progression $\checkmark 1/2$	(2 marks)

SECTION C: PHYSICS (33 marks)

SECTION C: PHYSICS (33 marks)			
21.		(3 marks)	
C			
	Image dist=object distance ✓	g g	
	image size = object size		
	image laterally inverted		
22	Rod A and B acquired opposite charges upon rubbing i.e. A- Negatively charged and B – Positively charged	(1 mark)	
23	a) ⁰	(2 marks)	
C >	- Correct Direction - 1 mark - Correct pattern - 1 mark		
-	b) The magnetic field lines are most concentrated at the poles/concentration of magnetic field lines is greatest at the poles)	(1mark)	
24.	The direction of vibrations of particles of the medium is parallel to the direction of sound energy.	(1 mark)	
25.	(a) The work done in moving a unit charge from point X to point Y.	(1 mark)	
	(a) (i) Voltage is directly proportional to current/ Graph is straight and therefore Ohm's law is obeyed.	(2 marks)	
	(ii) The temperature of the lamp is changing or cross sectional area is decreasing or length is increasing.	(1 mark)	
26.	- The resistance of the coil/number of turns in the coil//voltage - The time taken	(1 mark) (1 mark)	
27.	Due to refraction of light; velocity of light changes at the interface.	(2 mark)	

28.	(a)	
20.	(a)	(3 marks)
	F	
	E E	7 - m - m - m - m - m - m - m - m - m -
	(b) Size of image = $4.7-5.7 \pm 0.5$ cm	(1 mark)
29.	900 = no. of units x rate	
25.	900	(3 marks)
	$Rate = \frac{900}{5 \times 100 \times 4 \times 30}$	
	$\frac{3 \times 100 \times 4 \times 30}{1000}$	
	= sh. 15.00 per kWh	-
30.	Voltage to be measured is connected across the Y-plates	(1 manle)
Ĭ.	The displacement of the spot is then measured	(1 mark)
	Voltage = No. of displacement x sensitivity	(1 moule)
	Be and a solution of	(1 mark)
31.	- Anode is made of a good conductor such as copper.	(1 mark)
	- Use of cooling fins.	(1 mark)
	Circulating oil through channels in the anode.	(1 mark)
32.	- Alpha particles	(1 mark)
	They are heavier compared to the beta particles	(1 mark)
33.	u ·	(1 mark)
+	(a) Z is the depletion layer/potential barrier/energy gap	'
	(b)	(1 mark)
	p n	
	(positive terminal connected to n-type, negative terminal connected to P-type)	
	(Positive commerced to n-type, negative terminal connected to P-type)	
	(c) Electrons and holes in their respective regions are attracted away from the junction by the external voltage.	(1 mark)
	January Campo.	
7		