4.6.2 Physics Paper 2 (232/2)

SECTION A (25 marks)

	1.	Sounds produced in the studio are reflected by the walls producing	(2 marks)
		echoes $$ in the room; that interfere with the signals transmitted. The	
		woolen materials will absorb the sound hence reduce the echo	
		effects√.	
	2.	 Hard x-rays have a higher frequency than soft x-ray. √ 	(1 mark)
		Hard x-rays have more penetrating power than soft x-rays. √	
		(only one)	
	3.	End B is a south pole.	(1 mark)
	4.	The image is blurred.	(1 mark)
	5.	$\underline{\sin i} = \eta \sqrt{}$	(2 marks)
1		Sin r	
	\leq	$\frac{Sin30}{Sinx} = 1.36$	
		$\frac{Sin30}{1.36} = Sin x$	
		$x = 21.6^{\circ} $	
	6.	$I = \frac{P}{V} $	(3 marks)
		= 1800 ₁	
		$=\frac{1800}{240}$	
		= 7.5A	
		Fuse rating of 8A is suitable. √	

7.	2 reflected rays 2 object	(3 marks)
8.	Spontaneous disintegration of atomic nuclei by emission of	(1 mark)
	radiations. √	
9.	$\frac{V_p}{V_s} = \frac{I_s}{I_p} = \frac{N_p}{N_s} \sqrt{\frac{1}{N_s}}$	(3 marks)
-	$\frac{600}{1000} = \frac{0.15}{1000}$	
+	$\frac{1}{9000} = \frac{1}{I_p} \sqrt{\sqrt{1}}$	
	$I_p = 2.25A$	
10	The leef collenges a	(2
10.	The leaf collapses √	(3 marks)
	 Negative charge is induced on the tip of the pin. Pin repels 	
	negatively charged √air ions which discharges the electroscope√.	
11.	Gamma, ultraviolet, purple light, infrared. √	(1 mark)
12.	It acts as a depolarizer. √	(1 mark)
13.	A battery is a group of cells connected in series or parallel. √	(1 mark)

SECTION B (55 Marks)

15.	a) (i) By use of step-up transformers low input voltages are stepped up to	(1 mark)
	high voltages for transmission. √ (ii) They are cheaper √	(2 marks)
Q	They are lighter. √/ lower density / lower weight	
\sim	b) Y is the earth wire√, it is connected to the casing of the cooker. √	(2 mark)
Atl	c) (i) $I = \frac{P}{v} = \frac{60}{240} = 0.25 A \sqrt{\frac{5}{0.25}}$ No. of bulbs $= \frac{5}{0.25} = 20 \sqrt{\frac{5}{0.25}}$	(2 marks)
	(ii) Cost = Power x time x rate $\sqrt{\frac{60}{1000}} \times 20 \times 5 \times 20 \times 3\sqrt{\frac{3000}{1000}} \times 20 \times 20 \times 20 \times 3\sqrt{\frac{3000}{1000}} \times 20 \times 20 \times 20 \times 20 \times 20 \times 20 \times 20$	(3 marks)

16.	a)		
	(i)	The emission of electrons from a metal surface when light/	(1 mark)
		electromagnetic radiations shine on it. $\sqrt{}$	
	(ii)	The minimum frequency of radiation required to eject electrons	(1 mark)
		\blacksquare from a metal surface. \checkmark	
	b)	To the state of th	(2 marks)
	(i)	Increased intensity increases the number of electrons emitted $\sqrt{}$	
		hence a higher current reading on the microammeter. $\sqrt{}$	
(
	(ii)	To minimize collisions between electrons and air molecules which	(1 mark)
		— would cause loss of energy. $\sqrt{}$	
	3		
	c)ll		(3 marks)
	(i)		· ·
1	5	$=\frac{Vk.e}{Vf}$	
		$=\frac{(3.0-1.0)\times10^{-19}}{(8-5.7)\times10^{14}}$	
4		$= 8.69 \times 10^{-34} \mathrm{Js}$	
	(ii)	$T_{\circ} = \frac{c}{f_{\circ}} $	(3 marks)
7		$= \frac{3 \times 10^8}{4.6 \times 10^{14}} \qquad \sqrt{4}$	
		$=6.52\times10^{-7}m$	

1.0		T
17.	a)	(3 marks)
	(i) No change in frequency√	
1	(ii) Wavelength increases√	
	(iii) Velocity increases√	
	E	
	b) (i) Image is virtual hence magnification = -2	(3 marks)
	$\frac{v}{u} = -2 \qquad v = -24\sqrt{\frac{v}{u}}$	
J	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	
	$\frac{1}{20} = \frac{1}{u} - \frac{1}{2u} \sqrt{}$,
	$\frac{1}{20} = \frac{2-1}{2u}$	
	u = 10cm	
		. 1
	(ii) – a film projector√	(2 marks)
	-A compound microscope√	
	c) In a camera focusing is done by changing the distance between the lens	(2 marks)
1	and the film. $\sqrt{}$	
	While in the eye focusing is done by changing the curvature of the lens.	
	d) −Diverging lens√	(21)
		(2 marks)
	Forms a virtual image when the object distance is greater than the focal	
	length. √	
	- Table	

18. (a)	(i)		(2 marks)
		depletion layer	
		P n-type	
	1		
		1 mark for polarity V 1 mark for showing	
	/ E		
		depletion layer	
	7 1°		
	(ii)	The holes and the electrons in their respective regions are attracted	(1 mark)
		away from the junction by the external voltage.	1
	(iii)	The voltage at which the diode begins to conduct in the reverse bias	(1 mark)
	0	mode.	
	(iv)	- In rectification circuits for changing a.c. to d.c.	(1 mark)
		- In control of voltages of Zener diode.	
П	7	(Any one correct)	
(b)	(i)		(2 marks)
		$f = \frac{1}{2}$	
		$f = \frac{1}{T}$	
		$=\frac{1}{5\times5\times10^{-3}}$	
	- L	=40Hz	
	11.		
	(ii)		(3 marks)
		$V = \begin{pmatrix} 7 \end{pmatrix}_{100}$	
		$V_{\circ} = \left(\frac{7}{2}\right) \times 100$	
		= 350V	
	(iii)	Double the time control to 10ms per division.	(1 mark)
		Adjust the frequency of the source to half the value	
			p.
7			

ii) (I) Amplitude = 10cm	(2 marks)
(II) Wavelength = 20m	
	- · ·
iii.	(1 mark)
$I T = \frac{1}{f} = \frac{1}{50} = 0.2s$	*
II $V=fx$	(3 marks)
$= 20 \times 50$ $= 1000 \text{ ms}^{-1}$	