## Contents

1 KCSE 2022 ..... 1
KCSE 2022 Paper 1 ..... 1
KCSE 2022 Paper 2 ..... 17


## 1 <br> KCSE 2022

## KCSE 2022 Paper 1

## Problem 1 ■■■ KCSE2022/P1/No. 1

Solve for $n$
$\frac{6 n}{n-1}=\frac{25}{n}$
SOLUTION:

$$
\begin{aligned}
& \frac{6 n}{n-1}=\frac{25}{n} \\
& 6 n^{2}-25 n+1=0 \\
&(3 n-5)(2 n-5)=0 \\
& 3 n=5 \Longrightarrow n=\frac{5}{3}=1 \frac{2}{3} \\
& 2 n=5 \Longrightarrow n=\frac{5}{2}=2 \frac{1}{2} \quad \sqrt{2} \quad \quad M_{1} \\
&2 n-1)=25
\end{aligned}
$$

## Problem 2 ■■ KCSE2022/P1/No. 2

A family used two-fifths of its monthly income on school fees. Threequarters of the remaining amount was used on family upkeep while the rest was invested. the family invested Ksh. 13500 monthly.

Calculate the amount of money the family used on school fees every month.

## SOLUTION:

Let $\mathrm{x}=$ the total monthly income.

$$
\begin{aligned}
\text { school fees } & =\frac{2}{5} x \\
\text { upkeep } & =\frac{3}{4} \text { of }\left(x-\frac{2}{5} x\right)=\frac{9}{20} x \\
\text { investment } & =x-\left(\frac{2}{5} x-\frac{9}{20} x\right)=\frac{3}{20} x=\text { Kish. } 13500 \\
\Longrightarrow & x=13500 \times \frac{20}{3}=90000 \\
\text { school fees } & =\frac{2}{5} x=\frac{2}{5} \text { of } 90000 \\
& =\text { Kish. } 36000
\end{aligned}
$$

## Problem 3 ■■■ KCSE2O22/P1/No. 3

Solve for x in the equation.
$5^{2 x-1}-25^{x}=500$
(3 marks)

## SOLUTION:

$$
\begin{aligned}
& 5^{2 x-1}-25^{x}=500 \\
& \frac{1}{5} \cdot 5^{2 x}-5^{2 x}=500 \\
& 5^{2 x}\left(\frac{1}{5}-1\right)=500 \\
& 5^{2 x} \cdot-\frac{4}{5}=500 \\
& \Longrightarrow M_{1} \\
& \Rightarrow 5^{2 x}=-625=-5^{4}
\end{aligned}
$$

$\therefore$ no real x solution, since $5^{2 \mathrm{x}}$ cannot be negative. $\mathrm{A}_{1}$

## Problem 4 ■■ $\quad$ KCSE2O22/P1/No. 4

Kipkoech and Tanui began a 5000 m race together at the starting line. Kipkoech and Tanui took 72 seconds and 80 seconds respectively to run a 400 m lap. The two athletes were together again at the starting line after some time.
Determine the number of laps that Tanui had to run to complete the race after they were together.

## SOLUTION:

$$
\begin{aligned}
72 & =2^{3} \times 3^{2} \\
80 & =2^{4} \times 5 \\
\operatorname{lcm}(72,80) & =2^{4} \times 3^{2} \times 5=720 \quad / \mathrm{M}_{1} \\
\text { Laps made by Tanui } & =\frac{720}{80}=9 \quad \sqrt{M_{1}} \\
\text { Remaining laps } & =\frac{5000}{400}-9=3 \frac{1}{2} \text { laps } / \mathrm{A}_{1}
\end{aligned}
$$

## Problem 5■■■ KCSE2022/P1/No. 5

Simplify
$\frac{18 a x-(3 a-4 x)(3 a+4 x)}{3 a-8 x}$
(3 marks)
SOLUTION:

$$
\begin{aligned}
\frac{18 a x-(3 a-4 x)(3 a+4 x)}{3 a-8 x} & =\frac{18 a x-\left(9 a^{2}-16 x^{2}\right)}{3 a-8 x} \\
& =\frac{16 x^{2}+18 a x-9 a^{2}}{3 a-8 x} \\
& =\frac{16 x^{2}+24 a x-6 a x-9 a^{2}}{3 a-8 x} \\
& =\frac{(2 x+3 a)(8 x-3 a)}{-1(8 x-3 a)} \\
& =-1(2 x+3 a)=-2 x-3 a / M_{1}
\end{aligned}
$$

## Problem 6 ■■■ KCSE2022/P1/No. 6

In the quadrilateral $A B C D, A D=C D=C D=6 \mathrm{~cm}$ and $B A=B C=$ 12 cm . Angle $\mathrm{ADC}=300^{\circ}$.


Calculate, correct to 2 decimal places, the area of the quadrilateral $A B C D$.

## SOLUTION:

$$
\begin{aligned}
& \text { Area of } \triangle A D C=\frac{1}{2} \times 6 \times 6 \sin 60^{\circ}=9 \sqrt{3} \mathrm{~cm}^{2} \quad \sqrt{M_{1}} \\
& \text { Area of } \triangle A B C=\sqrt{15(15-12)(15-12)(15-6)} \sqrt{ } M_{1} \quad A C=6 \mathrm{~cm}, \mathrm{~s}= \\
& \text { Area of a triangle: } \\
& \begin{array}{c}
\frac{1}{2} a b \sin C \\
\text { FORnce } \frac{\text { is equilateral }}{\sqrt{s(s-a)(s-b)(s-c)}}
\end{array} \\
& \text { where } s=\frac{a+b+c}{2}
\end{aligned}
$$

Area of $A B C D=9 \sqrt{15}-9 \sqrt{3}=19.2683$
$\sqrt{M}$
use a
$\sqrt{\mathrm{A}_{1}}$

## Problem 7■■■ KCSE2022/P1/No. 7

A watch loses 8 seconds every hour. It was set to read the correct time at 1100 h on Sunday.
Determine the time, in a 12 -hour system, the watch will show on the following Thursday when the correct time is 0500h.

## SOLUTION:

$$
\begin{aligned}
\text { 1100h Sunday to 1100h Wednesday } & =24 \times 3=72 \mathrm{~h} \\
\text { 1100h Wednesday to 0500h Thursday } & =18 \mathrm{~h} \\
\text { Total time } & =18+72=90 \mathrm{~h} \\
\text { Time lost } & =\frac{90 \times 8}{60}=12 \mathrm{~min} \quad / \mathrm{M}_{1} \\
\text { Time on Thursday } & =5: 50 \mathrm{am}-12 \mathrm{~min} / \mathrm{M}_{1} \\
& =4: 48 \mathrm{am}
\end{aligned}
$$

## Problem 8 ■■■ KCSE2022/P1/No. 8

A lorry left town A for town B and maintained an average speed of $50 \mathrm{~km} / \mathrm{h}$. A car left town A for town B 42 minutes later and maintained an average speed of $80 \mathrm{~km} / \mathrm{h}$. At the time the car arrived in town $B$, the lorry had $\mathbf{2 5 k m}$ to cover to town B.
Determine the distance between town A and B .

## SOLUTION:

Let $\mathrm{t}=$ time taken by car from town A to town B .

| Lorry | Speed(km/h) | Time( h ) | Distance(km) |
| :---: | :---: | :---: | :---: |
|  | $)^{50}$ | $\frac{42}{60}+$ t | $50\left(t+\frac{42}{60}\right)$ |
| Car | 80 | t | 80t |

The Lorry had $\mathbf{2 5 k m}$ more to cover when car arrived at town $B$, thus:

$$
\begin{aligned}
& 80 \mathrm{t}=50\left(\mathrm{t}+\frac{42}{60}\right)+25 \quad \sqrt{M_{1}} \\
& 80 \mathrm{t}=50 \mathrm{t}+35+25 \\
& 30 \mathrm{t}=60 \Longrightarrow \mathrm{t}=2 \mathrm{~h} \quad \sqrt{M_{1}}
\end{aligned}
$$

hence the distance between the two towns is:

$$
=80 \mathrm{t}=80 \times 2=160 \mathrm{~km} / \mathrm{A}_{1}
$$

## Problem 9■■■ KCSE2O22/P1/No. 9

Port L is 120 km on a bearing of $S 30^{\circ} \mathbf{W}$ from port K . A ship left port K at 1000 h and sailed at a speed of $40 \mathrm{~km} / \mathrm{h}$ along the bearing of $\mathbf{S} 60^{\circ} \mathrm{E}$.
Using scale drawing, determine the bearing of the ship from port $L$ at 1400h.

## SOLUTION:



$$
\begin{aligned}
\text { Distance covered } & =40 \times 4=160 \mathrm{~km} \\
\text { Bearing } & =\mathrm{N} 83^{\circ} \mathrm{E} \\
& =083^{\circ}
\end{aligned}
$$

```
Accurate scale drawing
/ S1
Position of L
Position of Ship
```


## Problem 10 ■■■ KCSE2022/P1/No. 10

The image of $P(-2,5)$ under a translation $T$ is $P^{\prime}(2,2)$. $Q^{\prime}(9,-5)$ is the image of $Q$ under the same translation $\mathbf{T}$.
Determine the coordinates of $Q$.

## SOLUTION:

$$
\begin{aligned}
& T+\binom{-2}{5}=\binom{2}{2} \\
& \Longrightarrow T=\binom{2}{2}-\binom{-2}{5}=\binom{4}{-3} \quad \sqrt{M_{1}} \\
& T+\overrightarrow{O Q}=\overrightarrow{\mathrm{OQ}^{\prime}} \\
&\binom{4}{-3}+\overrightarrow{O Q}=\binom{9}{-5} \\
& \Longrightarrow \overrightarrow{O Q}=\binom{9}{-5}-\binom{4}{-3}=\binom{5}{-2} \sqrt{ } M_{1} \\
& \therefore Q(5,-2)
\end{aligned}
$$

## Problem 11■■■ KCSE2O22/P1/No. 11

A Kenyan bank bought and sold United Arab Emirates (UAE) dirhams on two different dates as shown below.

|  |  | Buying(Ksh.) | Selling(Ksh.) |
| :--- | :--- | :---: | :---: |
| 1st August 2021 | 1 UAE dirham | 28.40 | 28.90 |
| 16th August 2021 | 1 UAE dirham | 28.00 | 28.40 |

A Kenyan tourist who travelled to UAE on 1st August 2021 converted
Ksh. 130050 to UAE dirhams.
During her stay in UAE, she spent 3520 UAE dirhams. She arrived back to Kenya on 16th August 2021. On the same day she converted the remaining amount of money to Kenya shillings at the same bank.
Calculate the amount of money in Kenya shillings that she received from the bank.

## SOLUTION:

$$
\begin{aligned}
\text { Dirhams received } & =\frac{130050}{28.90}=4500 \quad M_{1} \text { use a } \\
\text { Remainder after expenses } & =4500-3520=980 \\
\text { Ksh. } \text { received } & =980 \times 28.00 \\
& =\text { Ksh. } 27440
\end{aligned}
$$

## Problem $12 \square \square \square \quad$ KCSE2022/P1/No. 12

An electric post erected vertically is 20 m from point $P$ on the same level ground. The angle of elevation of the top, $T$, of the post from $P$ is $30^{\circ}$. Given that $S$ is the mid point of the post, calculate, correct to 1 decimal place, the angle of elevation of $S$ from $P$.

## SOLUTION:

$$
\begin{aligned}
\mathrm{RT} & =20 \tan 30 \\
\mathrm{RS} & =\frac{1}{2} \mathrm{RT}=\frac{1}{2} \times 20 \tan 30=10 \tan 30^{\circ} \quad / M_{1} \\
\tan \theta & =\frac{\mathrm{SR}}{\mathrm{PR}} \Longrightarrow \theta=\tan ^{-1} \frac{\mathrm{SR}}{\mathrm{PR}} \\
\theta & =\tan ^{-1}\left(\frac{10 \tan 30}{20}\right)=\tan ^{-1}(0.2887) \quad M_{1} \text { use a } \\
& =16.1^{\circ}
\end{aligned}
$$

## Problem $13 \square \square \square$ KCSE2022/P1/No. 13

Given that $A=\left(\begin{array}{cc}2 & 6 \\ 2 u & 5\end{array}\right), B=\left(\begin{array}{cc}7 & -3 \\ -u & 5\end{array}\right)$ and $B A=\left(\begin{array}{cc}2 & v \\ 16 & w\end{array}\right)$, determine the values of $u, v$ and $w$.

## SOLUTION:

$$
\left.\left.\begin{array}{rl}
B A & =\left(\begin{array}{cc}
7 & -3 \\
-u & 5
\end{array}\right)\left(\begin{array}{cc}
2 & 6 \\
2 u & 5
\end{array}\right)
\end{array}=\left(\begin{array}{cc}
14-6 u & 27 \\
8 u & 25-6 u
\end{array}\right) / M_{1}\right] \text { (A } \begin{array}{cc}
14-6 u & 27 \\
8 u & 25-6 u
\end{array}\right)=\left(\begin{array}{cc}
2 & v \\
16 & w
\end{array}\right) .
$$

$$
\begin{aligned}
& \Longrightarrow v=27 \\
& \Longrightarrow 25-6(2)=3 \Longrightarrow w=13
\end{aligned}
$$

## Problem 14 ■■■ KCSE2O22/P1/No. 14

The capacities of two similar containers are 54 ml and $\mathbf{2 5 0 m l}$ respectively. The difference in the heights of the two containers is 4 cm .
Calculate the height of the larger container.

> (3 marks)

## SOLUTION:

Let $x=$ height of larger container.

$$
\begin{aligned}
& \frac{\text { volume of larger container }}{\text { volume of smaller container }}=\frac{250}{54}=\frac{125}{27} \\
& \frac{\text { height of larger container }}{\text { height of smaller container }}=\left(\frac{125}{27}\right)^{\frac{1}{3}}=\frac{5}{3}
\end{aligned}
$$

$$
\frac{x}{x-4}=\frac{5}{3}
$$

$$
3 x=5 x-20 \Longrightarrow x=10
$$

$\therefore$ Height of larger container is 10 cm

## Problem 15 ■■■ KCSE2022/P1/No. 15

The table below shows the mean marks in a mathematics test of two classes.

| Class | Number of students | Mean mark |
| :---: | :---: | :---: |
| X | 43 | 65 |
| y | 45 | 62 |

Calculate, correct to 2 decimal places, the mean mark of the classes. ( $\mathbf{2}$ marks)

## SOLUTION:

$$
\begin{aligned}
\text { Mean } & =\frac{(43 \times 65)+(45 \times 62)}{43+45} \sqrt{M_{1}} \\
& =63.47 \quad \int A_{1} \text { use a }
\end{aligned}
$$

| KEYPOINT |
| :--- |
| Mean of combined series is: |
| $\overline{\mathrm{x}}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}$ |

## Problem16■■ KCSE2022/P1/No. 16

The base, ABCDEF, of a right pyramid is a regular hexagon of side
2.5 cm . Point V is the vertex of the pyramid and the length of the slanting edges is 4 cm .
Draw a labelled net of the pyramid.

## SOLUTION:

## SOLID MARKING RUBRIC



## Problem17■■ KCSE2022/P1/No. 17

A contractor hired Wema and Tatu to transport 144 tonnes of stones to building sites $A$ and $B$.
To transport 48 tonnes of stones for a distance of $\mathbf{2 8 k m}$, the contractor paid Ksh. 24000.
(a) Wema transported 96 tonnes of stones to site A, a distance of 49 km .
(i) Calculate the amount of money that was paid to Wema.
(2 marks)

## SOLUTION:

Let $\mathrm{x}=$ amount paid to Wema.

|  | Weight <br> (tonnes) | Distance <br> $(\mathbf{k m})$ | Pay <br> (Ksh.) |
| :--- | :---: | :---: | :---: |
| Contractor | 48 | 28 | 24000 |
|  | 96 | 28 | 48000 |
| Wema | 96 | 49 | $\times$ |

$$
\begin{aligned}
28 \times x & =49 \times 48000 \\
x & =\frac{49 \times 48000}{28}=K \text { sh. } 84000 ~ / M_{1}
\end{aligned}
$$

(ii) For every 8 tonnes of stones Wema transported to site A, he spent Kish. 3000.
Calculate the profit Wema made.
(3 marks)
SOLUTION:

$$
\begin{aligned}
\text { Expenses } & =\frac{96}{8} \times 3000=36000 / \mathrm{M}_{1} \\
\text { Profit } & =84000-36000 \quad / \mathrm{M}_{1} \\
& =\text { Kish. } 48000 \quad \sqrt{\mathrm{~A}_{1}}
\end{aligned}
$$

(b) Tatu transported the remaining 48 tonnes of stones to site B, a distance of 84 km . If Tatu made $44 \%$ profit, calculate the amount of money Tatu spent to transport the stones.

## SOLUTION:

Let $y=$ amount paid to Tatu.

(c) Determine the ratio of the profit made by Wema to that made by

Tau.
(2 marks)
SOLUTION:
Profit by Tate $=44 \%$ of $72000=$ Ssh. $31680 / M_{1}$
Wema $:$ Tat $=48000: 31680$

$$
=50: 33
$$

$$
\sqrt{A_{1}}
$$

## Problem 18 ■- KCSE2022/P1/No. 18

A shot put is spherical and has mass of 7.26 kg . It is made of a metal with a density of $6.93 \mathrm{~g} / \mathrm{cm}^{3}$.
(Take $\pi=\frac{22}{7}$ )
(a) Determine the radius of the shot put, correct to 1 decimal place. (3 marks) SOLUTION:
Let $r=$ radius of the shot put.

$$
\text { volume }=\frac{7260}{6.93}=1047.619 \quad \text { use a }
$$

$$
\frac{4}{3} \times \frac{22}{7} \times r^{3}=1047.619
$$

| KEYPOINT |
| :--- |
| Volume of a sphere: |
| $\qquad \frac{4}{3} \pi r^{3}$ |

## KEYPOINT

Volume of a frustum:
$=\frac{1}{3} \pi R^{2} H-\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \pi\left(R^{2} H-r^{2} h\right)$

$$
\begin{aligned}
r^{3} & =1047.619 \times \frac{3}{4} \times \frac{7}{33}=250 \quad M_{1} \\
r & =\sqrt[3]{250}=6.2996 \\
& \approx 6.3 \mathrm{~cm}
\end{aligned}
$$

(b) A bucket is in the shape of a frustum of a cone. The base radius of the bucket is 7 cm . The bucket contains water to a height of 15 cm . The radius of the surface of the water is 10.5 cm .
(i) Find the volume of the water in the bucket.

## SOLUTION:

Let $h=$ height of the chopped off cone.
$\frac{\text { Radius of bigger cone }}{\text { Radius of smaller cone }}=\frac{\text { Height of bigger cone }}{\text { Height of smaller cone }}$

$$
\begin{aligned}
\frac{10.5}{7} & =\frac{h+15}{h} \\
\Longrightarrow h & =30 \Longrightarrow h+15=45 \mathrm{~cm}
\end{aligned}
$$

volume $=$ vol of bigger cone - vol of smaller cone

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7}\left(10.5^{2} \times 45-7^{2} \times 30\right) \\
& =3657.5 \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) The shot put ball is completely submerged in the water in the bucket.
Calculate the new height of the water in the bucket.

## SOLUTION:

Let $h=$ height of new larger cone formed and $r=$ new radius of water surface.

$$
1047.619=\frac{1}{3} \times \frac{22}{7}\left(r^{2} h-10.5^{2} \times 45\right)
$$

$\frac{\text { Height of new big cone }}{\text { Height of old smaller cone }}=\frac{\text { radius of new big cone }}{\text { radius of smaller cone }}$

$$
\begin{aligned}
\frac{h}{45} & =\frac{r}{10.5} \Longrightarrow h=\frac{450}{105} r \\
1047.619 & =\frac{1}{3} \times \frac{22}{7}\left\{r^{2}\left(\frac{450}{105} r\right)-10.5^{2} \times 45\right\} / M_{1}
\end{aligned}
$$

$$
1047.619 \times \frac{3}{1} \times \frac{7}{22}=\frac{450}{105} r^{3}-4961.25
$$

$$
\frac{450}{105} r^{3}=1047.619+4961.25=9452.5
$$

$$
r^{3}=9452.5 \times \frac{105}{450}=1402.0694
$$

$$
r=\sqrt[3]{1402.0694}=11.1924
$$

Therefore new height of water in the bucket is:

$$
=47.9674-30=17.9674 \mathrm{~cm}
$$

$$
h=\frac{450}{105} \times 11.1924=47.9674
$$

## Problem 19

A triangle $A B C$ is right angled at point $A$. The vertices of the triangle are $A(1,-2), B(5,4)$ and $C(m, n)$.
The equation of line BC is $5 \mathrm{y}-\mathrm{x}=15$.
(a) Determine:
(i) the equation of line AC in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, where a , b and c are integers. SOLUTION:
gradient of $A B=\frac{4-(-2)}{5-1}=\frac{6}{4}=\frac{3}{2} \quad \sqrt{M_{1}}$
gradient of $A C=\frac{-1}{3 / 2}=-\frac{2}{3}$
equation of $A C: y-(-2)=-\frac{2}{3}(x-1)$


$$
\Longrightarrow 2 x+3 y+4=0
$$

(ii) the coordinates of point C .
(3 marks)
SOLUTION:

$$
\begin{aligned}
& 5 y-x=15 \\
&-2 x+10 y=30 \\
& 2 x+3 y=-4 \\
& 13 y=26 \Longrightarrow y=2 \\
& x=5(2)-15=-5 \\
& \therefore C(-5,2)
\end{aligned}
$$

(b) A line passes through point $A$ and is parallel to line $B C$.

Determine the x -intercept of the line.

## SOLUTION:

$$
\begin{aligned}
& \text { gradient of } B C= \frac{1}{5} \\
& \text { gradient of } \ell=\frac{1}{5} \\
& \text { equation of } \ell=y-(-2)=\frac{1}{5}(x-1) \sqrt{5} M_{1} \\
& y m_{1}=\frac{1}{5} x-\frac{11}{5} \\
& x \text {-intercept: } \frac{1}{5} x=\frac{11}{5} \\
& x=11
\end{aligned} \quad \sqrt{M_{1}} \quad \begin{aligned}
& \text { at } x-\text { intercept } y=0
\end{aligned}
$$

## Problem 20 ■■■ KCSE2022/P1/No. 20

In the figure below, line $A B=10 \mathrm{~cm}$ and is part of a trapezium $A B C D$.
Point $X$ is such that angle $B A X=45^{\circ}$.

(a) Using a ruler and a pair of compasses only:
(i) locate point D on line AX such that $\mathrm{AD}: \mathrm{DX}=3: 1$.
(3 marks)
(ii) complete trapezium $A B C D$ such that line $D C$ is parallel to line $A B$ and angle $A B C=67.5^{\circ}$.
(iii) draw a perpendicular line from D to meet AB at E . Measure DE.

$$
D E=4.0 \mathrm{~cm} / \mathrm{B}_{1} \pm 0.1 \mathrm{~cm}
$$

(b) Calculate the area of the trapezium $A B C D$. SOLUTION:

$$
\begin{aligned}
\text { Area of } A B C D & =\frac{1}{2} \times D E(A B+C D) \\
& =\frac{1}{2} \times 4(10+4) \quad \sqrt{M_{1}} \quad D E=4 \mathrm{~cm}, A B=10 \mathrm{~cm}, C D=4 \mathrm{~cm} \\
& =28 \mathrm{~cm}^{2} \quad \sqrt{A_{1}}
\end{aligned}
$$

## Problem 21 ■■■ KCSE2022/P1/No. 21

The amount of money, in Kenya shillings, spent on airtime by a group of 30 people in a period of an hour was recorded ass shown below.

| 27 | 20 | 21 | 24 | 22 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 42 | 34 | 55 | 26 | 30 | 39 |
| 35 | 46 | 32 | 21 | 38 | 34 |
| 31 | 37 | 27 | 29 | 32 | 56 |
| 33 | 44 | 25 | 31 | 28 | 30 |

(a) Complete the frequency distribution table below.
(2 marks)

(b) On the grid below, draw a histogram to represent the data.

(c) Use the histogram to determine:
(i) The median amount of money spent on airtime by the 30 people.( $\mathbf{3}$ marks) SOLUTION:

$$
\begin{aligned}
5 \times 1.0+5 \times 1.4+1.8 \mathrm{x} & =\frac{1}{2} \times 30=15 \\
12+1.8 \mathrm{x} & =15 \\
1.8 \mathrm{x}=3 \Longrightarrow \mathrm{x} & =1 \frac{2}{3}=1.667 \\
\text { median } & =29.5+1.667=31.167 \\
& =31.17
\end{aligned}
$$

(ii) the number of people who spent more than Kish. 41.50 on airtime over that period.
(2 marks)
SOLUTION:

$$
\begin{aligned}
\text { number over } 41.5 & =0.6 \times 5+0.2 \times 15 / \mathrm{M}_{1} \\
& =6 \text { people }
\end{aligned}
$$

## Problem 22 ■■■ KCSE2022/P1/No. 22

The diagram below is a sketch of two curves $y=2 x^{2}+1$ and $y=x^{2}+1$ drawn on the same grid.

(a) Using the trapezium rule with 5 strips, estimate the area bounded by the curves $y=2 x^{2}+1, y=x^{2}+1$ and the lines $x=0$ and $\mathrm{x}=5$.
SOLUTION:
(5 marks)

(b) Using the mid ordinate rule with 5 strips, estimate the area bounded by the curves $y=2 x^{2}+1, y=x^{2}+1$ and the lines $x=0$ and $\mathrm{x}=5$.
(5 marks)
SOLUTION:

| $x$ | 0.5 | 1.5 | 2.5 | 3.5 | 4.5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $h_{1}=2 x^{2}+1$ | 1.5 | 5.5 | 13.5 | 25.5 | 41.5 |
| $h_{2}=x^{2}+1$ | 1.25 | 3.25 | 7.25 | 13.25 | 21.25 |
| $y_{i}=\left(h_{1}-h_{2}\right)$ | 0.25 | 2.25 | 6.25 | 12.25 | 20.25 |$M_{1}$

Area $=h\left(y_{1}+y_{2}+\cdots+y_{5}\right)$

$$
\begin{aligned}
& =1(0.25+2.25+6.25+12.25+20.25) \sqrt{M_{2}} \\
& =41 \frac{1}{4} \text { square units }
\end{aligned}
$$

## Problem 23 ■■ KCSE2022/P1/No. 23

A supermarket sold 530 packets of milk daily when the price was Ksh. 50 per packet.
Whenever the price per packet increased by Ksh. 4 , the number of packets sold decreased by 20.
If n represents the number of times the price was increased:
(a) Write an expression in terms of n for:
(i) the price of a packet of milk after the price was increased. SOLUTION:

$$
=50+4 n \sqrt{B_{1}}
$$

(ii) the number of packets of milk sold after the price was increased. (1 mark) SOLUTION:

$$
=530-20 \mathrm{n} / \mathrm{B}_{1}
$$

(iii) the total sales, in simplified expanded form, after the price of a packet of milk was increased.
SOLUTION:

$$
\begin{aligned}
S & =(50+4 n)(530-20 n) \quad M_{1} \text { let } S=\text { total sales } \\
& =-80 n^{2}+1120 n+26500 \sqrt{A_{1}}
\end{aligned}
$$

(b) Determine
(i) the number of times the price was increased to attain maximum sales.
SOLUTION:

$$
\begin{aligned}
\frac{d S}{d n} & =-160 n+1120 \sqrt{M} \\
0 & =-160 n+1120 \sqrt{ } M_{1} \quad \text { at maximum sales } \frac{d S}{d n}=0 \\
\Longrightarrow n & =7 \quad A_{1}
\end{aligned}
$$

(ii) the price of a packet of milk from maximum sales.

SOLUTION:

$$
50+4 \times 7=\text { Ksh. } 78 / \mathrm{B}_{1}
$$

(iii) the maximum sales.

SOLUTION:

$$
\begin{aligned}
S & =-80(7)^{2}+1120(7)+26500 \sqrt{M_{1}} \text { substituten } n=7 \text { into } S \\
& =\text { Ksh. } 30420
\end{aligned} \sqrt{A_{1}}
$$

## Problem 24 ■■■ KCSE2022/P1/No. 24

Triangle $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are drawn on the grid provided.

(a) Describe fully a single transformation that mapped triangle $A B C$ onto triangle $A^{\prime} B^{\prime} C^{\prime}$.

## SOLUTION:

Enlargement, scale factor -2 and centre $(0,0) \sqrt{B_{2}}$
evidence must be shown on the grid
(b) On the same grid, draw:
(i) triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ the image of $A^{\prime} B^{\prime} C^{\prime}$ under a rotation of $+90^{\circ}$ about $O(0,0)$.
(2 marks)

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(6,6), C^{\prime \prime}(2,4)
$$

(ii) triangle $A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$, the image of triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ under a reflection in the line $y=-x$ SOLUTION:

$$
A^{\prime \prime \prime}(-2,-8), B^{\prime \prime \prime}(-6,-6), C^{\prime \prime \prime}(-4,-2)
$$

(c) Draw the line of symmetry of triangle $A^{\prime} B^{\prime} C^{\prime}$ and hence determine its equation in the form $y=m x+c$, where $m$ and $c$ are constants. ( 4 marks) SOLUTION:

$$
(6,-6) \text { and }(3,-5)
$$

$$
\begin{array}{rlr}
m & =\frac{-5-(-6)}{3-6}=-\frac{1}{3} & \sqrt{M_{1}} \\
\text { equation of symmetry: } y-(-5) & =-\frac{1}{3}(x-3) & \sqrt{M_{1}} \\
\Longrightarrow y & =-\frac{1}{3} x-4 & \sqrt{A_{1}}
\end{array}
$$

## KCSE 2022 Paper 2

## Problem 25 ■■■ KCSE2022/P2/No. 1

An investor took a loan from a bank that charged interest. the loan and the interest accrued were repaid in monthly instalments. The investor repaid Ksh. 1500 in the first month and in each subsequent month the instalments were reducing by Ksh. 50 until the loan was fully repaid. Determine the maximum amount that may be paid for that loan.

## SOLUTION:

Let n be the number of months it takes to reduce the monthly instalments to 0 .

This problem reduces to computing the number of term of the AP.
$a=1500, d=-50, T_{n}=0$

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
0 & =1500+(n-1)(-50)
\end{aligned}
$$

$$
\Longrightarrow \mathrm{n}=31
$$



Let $S_{n}$ be the total amount of money paid for the loan.
This problem reduces to computing the sum of the AP

$$
\begin{array}{rlrl}
S_{30} & =\frac{n}{2}(2 a+(n-1) d) & \text { explicit AP sum formula } \\
& =\frac{31}{2}(2 \times 1500+(31-1)(-50)) \sqrt{M_{1}} \text { substitute known values } n=31, a=1500, d=-50 \\
& =\text { Ksh. } 23250 \quad \sqrt{A_{1}} \text { use a }
\end{array}
$$

## Problem $26 \square$ KCSE2022/P2/No. 2

Two machines A and B working independently can take 8 hours and 10 hours respectively to do a task. A third machine $C$ and machine $A$ working together can do the same task in 5 hours. Determine the time it would take machine B and machine C working together to do the same task.

## SOLUTION:

Let $\mathrm{t}=$ time it takes machine C to do a task alone.

|  | $\begin{array}{c}\text { Total time } \\ \text { in hours }\end{array}$ | $\begin{array}{c}\text { Fractional part } \\ \text { done in } 1 \text { hours }\end{array}$ |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{array}{c}c \\ \begin{array}{c}\text { Fractional part } \\ \text { each machine does } \\ \text { in } 5 \text { hours }\end{array} \\ \text { Machine A }\end{array}$ | 8 | $\frac{1}{8}$ |$]$| $\frac{5}{8}$ |
| :---: |
|  |
|  |
| Machine B |

Since it takes both in machines 5 hours to complete the task.

$$
\begin{aligned}
\frac{5}{8}+\frac{5}{t} & =1 \\
\frac{5}{t} & =\frac{3}{8} \\
\Longrightarrow \mathrm{t} & =\frac{8}{3} \times \frac{5}{1}=\frac{40}{3} \quad \checkmark M_{1}
\end{aligned}
$$

Let $\mathrm{m}=$ time it takes both B and C working together.

$$
\begin{aligned}
\frac{m}{10}+\frac{5 m}{t} & =1 \\
m\left(\frac{1}{19}+\frac{5}{t}\right) & =1
\end{aligned}
$$

$$
m=1 \div\left(\frac{1}{19}+\frac{5}{40 / 3}\right) \sqrt{M_{1}} \text { substitute } t=\frac{4}{45}
$$

$$
m=\frac{1}{7 / 40}=\frac{40}{7}
$$

$$
=5 \frac{5}{7}
$$

$$
\sqrt{\mathrm{A}_{1}}
$$

Both machine B and C would take $5 \frac{5}{7}$ hours to do the task together.

## Problem 27■■ KCSE2022/P2/No. 3

Simplify $\frac{3+\sqrt{5}}{7-3 \sqrt{5}}$, leaving the answer in the form $a+b \sqrt{c}$ where $a, b$ and $c$ are integers.

SOLUTION:

$$
\begin{aligned}
\frac{3+\sqrt{5}}{7-3 \sqrt{5}} & =\frac{3+\sqrt{5}}{7-3 \sqrt{5}} \times \frac{7+3 \sqrt{5}}{7+3 \sqrt{5}} \quad \sqrt{M_{1}} \text { multiply by the rational conjugate } \\
& =\frac{21+9 \sqrt{5}+7 \sqrt{5}+15}{49-45} \\
& =\frac{36+16 \sqrt{5}}{4} \\
& =9+4 \sqrt{5} \quad \int \mathrm{~A}_{1}
\end{aligned}
$$

## Problem 28 ■■■ KCSE2022/P2/No. 4

The market value of a certain precious stone varies directly as the square of its mass. One such stone of mass 10 kg has a value of Ksh .600000.
Calculate the value of a similar stone whose mass is 18.5 kg .

## SOLUTION:

Let $P=$ market value and $m=$ mass of stone

$$
P \propto m^{2} \Longrightarrow P=k^{2} \quad k=\text { constant of proportionality }
$$

$600000=k(10)^{2} \quad$ substitute $P=600000$ and $m=10$

$$
\Longrightarrow \mathrm{k}=6000 \quad \text { solve for } \mathrm{k}
$$

$$
\therefore P=6000 \mathrm{~m}^{2}
$$

$\sqrt{M_{1}}$ substitute $\mathrm{k}=6000$ to get the defining equation
Hence at $\mathrm{m}=18.5 \mathrm{~kg}$;

$$
P=6000(18.5)^{2}
$$

$=$ Kish. 2053500
$\sqrt{M_{1}}$ $\sqrt{A_{1}}$ substitute $m=18.5$ use a

## Problem 29 ■■■ KCSE2022/P2/No. 5

The perimeter of a rectangle is 48 cm while its area is $108 \mathrm{~cm}^{2}$. Form a quadratic equation to represent the situation and hence determine the dimensions of the rectangle.

## SOLUTION:

Let $a=$ length of rectangle and $b=$ width of rectangle.

$$
\begin{aligned}
& 2(a+b)=48 \\
& a b=108 \\
& a(24-a)=108 \\
& 24 a-a^{2}=108 \\
& a^{2}-24 a+108=0 \\
& (a-6)(a-18)=0 \quad \sqrt{M_{1}} \\
& a-6=0 \Longrightarrow a=6 \\
& a-18=0 \Longrightarrow a=18 \\
& \text { When } a=6, y=24-6=18 \\
& \text { When } a=18, y=24-18=6
\end{aligned}
$$

Hence the dimensions are 6 cm by 18 cm . $\mathrm{A}_{1}$

## Problem 30 - KCSE2022/P2/No. 6

Two parallel chords $A B=4 \mathrm{~cm}$ and $C D=10 \mathrm{~cm}$ lie on opposite sides of a centre $\mathbf{O}$ of a circle. The perpendicular distance between the two chords is 7 cm .
Calculate the radius of the circle leaving the answer in surd form.
(3 marks)

## SOLUTION:

Let $h=$ distance from centre $O$ to midpoint of $C D$.
$\therefore 7-h=$ distance from centre $O$ to midpoint of $A B$.

$$
\begin{aligned}
O B^{2} & =(7-h)^{2}+2^{2} \\
& =49-14 h+h^{2}+4 \sqrt{ } M_{1}
\end{aligned}
$$

SKETCH


$$
\begin{aligned}
O D^{2} & =\mathrm{h}^{2}+5^{2} \\
\Longrightarrow 53-14 \mathrm{~h}+\mathrm{h}^{2} & =\mathrm{h}^{2}+25 \\
14 \mathrm{~h} & =28 \Longrightarrow \mathrm{~h}=2 \\
\therefore \mathrm{OD} & =\sqrt{2^{2}+5^{2}} \\
& =\sqrt{29}
\end{aligned}
$$

## Problem 31■■■ KCSE2022/P2/No. 7

A rectangle $A B C D$ in which $A B=12 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$ is the base of a right pyramid whose apex is $V . V A=V B=V C=V D=13 \mathrm{~cm}$. Point $M$ is the mid point of the edge VC .

Calculate, correct to 2 decimal places, the length of line AM.

## SOLUTION:

$$
\begin{align*}
A C & =\sqrt{12^{2}+5^{2}}=13 \sqrt{M_{1}} \text { so } A V C \text { is equilateral since } V A=V C=A C \\
A M & =\sqrt{13^{2}-6.5^{2}}  \tag{1}\\
& =11.26 \mathrm{~cm}
\end{align*}
$$

## Problem 32 ■ $\square$ KCSE2022/P2/No. 8

In the figure below, O is the centre of the circle. Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D lie on the circumference of the circle. Line $A B$ is parallel to the straight line EDO and line FAE is a tangent to the circle at $A . \angle F A B=a^{\circ}$, $\angle D O A=b^{\circ}, \angle D C B=70^{\circ}$.


Determine the values of $a$ and $b$.

## SOLUTION:

$$
\angle D A B=180^{\circ}-70^{\circ}=110^{\circ}
$$

$$
\begin{array}{rlrl}
\angle \mathrm{DAO} & =\frac{180^{\circ}-\mathrm{b}}{2} & & \text { base angles of isosceles triangle are equal } \\
\angle \mathrm{OAB} & =\angle \mathrm{DOA}=\mathrm{b} & & \text { alternating angles are equal } \\
110^{\circ} & =\frac{180^{\circ}-\mathrm{b}}{2}+\mathrm{b} & \\
\Longrightarrow \mathrm{~b} & =40 & \angle \mathrm{M} & \\
\angle \mathrm{OAF} & =\angle \mathrm{FAB}+\angle \mathrm{MAO}=\mathrm{DAO}+\angle \mathrm{OAB} \\
90^{\circ} & =\mathrm{a}+40^{\circ} & \mathrm{M} \\
\Longrightarrow \mathrm{a} & =50 &
\end{array}
$$

## Problem $33 \square \square \square$ KCSE2022/P2/No. 9

The population growth of a colony of bacteria was recorded at intervals of 5 seconds as shown in the table below.

| $t(s)$ | 0 | 5 | 10 | 15 | 20 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number of bacteria | 5 | 7 | 11 | 16 | 24 | 36 |

(a) On the grid provided, draw a graph of the population of bacteria against time.


## GRAPH MARKING RUBRIC

All points plotted $\quad \sqrt{P_{1}}$
Line of best fit drawn $\quad \sqrt{L_{1}}$
(b) Use the graph to determine, correct to 2 decimal places, the average rate of change of the population of bacteria between $t=5$ seconds and $t=20$ seconds..

## SOLUTION:

Using $(20,24)$ and $(5,7)$

$$
\begin{aligned}
\text { gradient } & =\frac{24-7}{20-5} \\
& =\frac{17}{15}=1.13 \quad M_{1}
\end{aligned}
$$

## Problem 34 ■■■ KCSE2022/P2/No. 10

A circle centre $C(5,5)$ passes thought points $A(1,3)$ and $B(a, 9)$. Find the equation of the circle and hence the possible values of $a$.

## SOLUTION:

$$
r^{2}=(5-1)^{2}+(5-3)^{2}=20
$$

$r=$ radius of circle
Equation of circle CA: $(x-5)^{2}+(y-5)^{2}=20 \sqrt{M_{1}(x-a)^{2}-(y-b)^{2}=r^{2}}$ $(a-5)^{2}+(9-5)^{2}=20$ substitute $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=9$

$$
\begin{aligned}
(a-5)^{2} & =20-16=4 \\
a-5 & = \pm \sqrt{4}= \pm 2
\end{aligned}
$$

$$
\sqrt{M_{1}}
$$

$$
a=7 \text { or } 3
$$

$$
\sqrt{A_{1}}
$$

## Problem 35 ■■ KCSE2022/P2/No. 11

The figure below represents the curve of the function $y=1-$ Asinwx for the range $-35^{\circ} \leq x \leq 50^{\circ}$.


Determine the values of $A$ and $R$.

## SOLUTION:

## SKILL HUNT

For any sine function in the form $y=$ $a \sin (b x+c)$, then:

## - Amplitude is a

- period is $\frac{2 \pi}{b}=\frac{360}{b}$,
- and phase is given by c.

$$
\begin{aligned}
60 & =\frac{360}{w} \\
\Longrightarrow w & =6
\end{aligned}
$$

## Problem 36■■■ KCSE2022/P2/No. 12

The data below represents the number of animals owned by 7 neighbours:

$$
9,5,14,6,8,13 \text { and } 15 .
$$

Calculate, correct to the nearest whole number, the standard deviation of the number of animals.

SOLUTION:

$$
\begin{aligned}
\bar{x}=\frac{\sum x}{n} & =\frac{9+5+14+6+8+13+15}{7}=10 \\
d & :-1,5,4,-4,-2,3,5 \\
s=\sqrt{\frac{d^{2} d^{2}}{n}} & : 1,25,16,16,4,9,25 \\
& =\sqrt{\frac{1+25+16+16+4+9+25}{7}}=3.7034 \\
& \approx 4
\end{aligned}
$$

## Problem 37 ■■■ KCSE2022/P2/No. 13

The table below shows income tax rates in a certain year.

| Monthly taxable income in <br> Kenya shillings | Tax rates in each shilling <br> $(\%)$ |
| :---: | :---: |
| $0-12298$ | 10 |
| $12299-23885$ | 15 |
| $23886-35472$ | 20 |

A tax relief of Ksh. 1408 per month was allowed. Calculate the monthly income tax paid by an employee whose monthly taxable income was Ksh. 26545.75.
SOLUTION:

| 1st band: | $10 \% \times 12298$ |
| ---: | :--- |
| 2nd band: | $=$ Ksh. 1229.80 |
| 3rd band: | $15 \% \times 11587$ <br> $20 \% \times 2660.75$ |
|  | $=$ Ksh. $1738.05 \quad$ Ksh. 532.15 |$\quad / M_{1}$

$$
\begin{aligned}
\text { Gross tax } & =1229.80+1738.05+532.15 \\
& =\text { Ksh. } 3500 \\
\text { Net tax } & =3500-1408 \\
& =\text { Ksh. } 2092
\end{aligned}
$$

## Problem 38 ■■■ KCSE2022/P2/No. 14

Point $P(8,4,-1)$ divides line $A B$ internally in the ration $4: 1$. The position vector of point $A$ with respect to the origin O is $\left(\begin{array}{c}-4 \\ 8 \\ 3\end{array}\right)$. Determine the coordinates of point $B$.

## SOLUTION:

$$
\begin{aligned}
\overrightarrow{\mathrm{OP}} & =\frac{4}{5} \overrightarrow{\mathrm{OB}}+\frac{1}{5} \overrightarrow{\mathrm{OA}} \\
\left(\begin{array}{c}
8 \\
4 \\
-1
\end{array}\right) & =\frac{4}{5} \overrightarrow{\mathrm{OB}}+\frac{1}{5}\left(\begin{array}{c}
-4 \\
8 \\
3
\end{array}\right) \\
\frac{4}{5} \overrightarrow{\mathrm{OB}} & =\left(\begin{array}{c}
8 \\
4 \\
-1
\end{array}\right)-\left(\begin{array}{c}
-4 / 5 \\
8 / 5 \\
3 / 5
\end{array}\right)=\left(\begin{array}{c}
44 / 5 \\
12 / 5 \\
-8 / 5
\end{array}\right) \\
\overrightarrow{\mathrm{OB}} & =\frac{5}{4}\left(\begin{array}{c}
44 / 5 \\
12 / 5 \\
-8 / 5
\end{array}\right)=\left(\begin{array}{c}
11 \\
3 \\
-2
\end{array}\right)
\end{aligned}
$$

Hence coordinate of $B$ is $(11,3,-2) \sqrt{B_{1}}$

## Problem 39

## KCSE2022/P2/No. 15

An aircraft took off from an airport $\mathrm{A}\left(\mathbf{0}^{\circ}, 40^{\circ} \mathrm{W}\right)$ at 1100 h local time. The aircraft landed at airport $\mathrm{B}\left(0^{\circ}, 65^{\circ} \mathrm{W}\right)$ at 1200 h local time.

Determine the speed of the aircraft in knots.

## SOLUTION:


longitude difference $=65-40=25^{\circ}$

$$
\text { time difference }=25 \times 4=100 \mathrm{~min}=1 \mathrm{~h} 40 \mathrm{~min}
$$

arc length $A B=60 \times 25=1500 \mathrm{~nm}$
$\sqrt{M_{1}}$ Distance $=60 \theta$

$$
\text { time taken }=1200 \mathrm{~h}-1100 \mathrm{~h}+1 \mathrm{~h} 40 \mathrm{~min}
$$

$$
=2 h 40 \min =2 \frac{2}{3} h=\frac{8}{3} h
$$

$$
\text { speed }=1500 \mathrm{~nm} \div \frac{8}{3}
$$


$=562.5$ knots

$$
\sqrt{A_{1}}
$$

## Problem 40■■■ KCSE2O22/P2/No. 16

The velocity $\mathrm{vm} / \mathrm{s}$ of a particle moving in a straight line is $(-2 \mathrm{t}+4) \mathrm{m} / \mathrm{s}$. Determine the distance moved by the particle during the first second of its motion.

## SOLUTION:

$$
\begin{aligned}
s=\int v d t & =\int_{0}^{1}(-2 t+4) d t / B_{1} \quad \text { during first second is between } t=0 \text { and } t=1 \\
& =\left[-t^{2}+4 t\right]_{0}^{1} \\
& =-1+4=3 \mathrm{~m}
\end{aligned}
$$

## Problem 41■■■ KCSE2022/P2/No. 17

A wholesaler stocks two types of rice: Refu and Tamu. the wholsesale prices of 1 kg of Refu and 1 kg of Tamu are Ksh. 80 and Ksh. 140 respectively. The wholesaler also stocks blend $\mathbf{A}$ rice which is a mixture of Refu and Tamu rice mixed in the ration $3: 2$.
(a) (i) A retailer bought 10 kg of blend A rice. To this blend, the retailer added some Tamu rice to prepare a new mixture blend X . the ratio of Refu rice to Tamu rice in blend $X$ was $1: 2$.
Determine the amount of Tamu rice that was added.
(3 marks) SOLUTION:
Let $\mathrm{a}=\mathrm{amount}$ of Tamu rice added to prepare blend X .

|  | Refu | Tamu | Mixture |
| :--- | :---: | :---: | :---: |
| Ratio (as a fraction) | $\frac{3}{5}$ | $\frac{2}{5}$ | 1 |
| Quantity (kg) | $\frac{3}{5} \times 10$ | $\frac{2}{5} \times 10$ | 10 |
| Blend X | $\frac{3}{5} \times 10$ | $\frac{2}{5} \times 10+\mathrm{a}$ | $10+\mathrm{a}$ |

The ratio of Refu rice to Tamu rice in blend $X$ is $1: 2$, hence

(ii) The retailer sold blend X rice making a profit of $20 \%$. Determine the selling price of 1 kg of blend X .

## SOLUTION:

Buying Price per $\mathrm{kg}=\frac{6 \times 80+(8+4) \times 140}{18} \sqrt{M_{1}}$

$$
=\text { Ksh. } 120
$$

Selling price per $\mathrm{kg}=120 \% \times 120$

$$
=\text { Ksh. } 144
$$

$\sqrt{M_{1}}$ $\sqrt{A_{1}}$
(b) The wholesaler prepared another mixture, blend $B$, by mixing $\times \mathrm{kg}$ of blend A rice with y kg of Tamu rice. Blend B has a wholesale price of Ksh. 130 per kg.
Determine the ratio $\mathrm{x}: \mathrm{y}$.

SOLUTION:

|  | Blend $A$ | Tamu rice | Mixture |
| :--- | :---: | :---: | :---: |
| Ratio (as a fraction) | $\frac{x}{x+y}$ | $\frac{y}{x+y}$ | 1 |
| Buying price | $\frac{80 \times 3+140 \times 2}{5}$ | 144 | - |
| Total Cost | $\frac{x}{x+y} \times 104$ | $\frac{y}{x+y} \times 144$ | 130 |

Selling price per kg was Ksh. 130, hence

$$
\begin{aligned}
\frac{x}{x+y} \times 104+\frac{y}{x+y} \times 140 & =130 \\
\frac{104 x+140 y}{x+y} & =130 \\
104 x+140 y & =130 x+130 y / M_{1} \\
26 x & =10 y \\
\frac{x}{y} & =\frac{10}{26}=\frac{5}{13} \quad / M_{1}
\end{aligned}
$$

Hence the ratio $x: y$ is $5: 13 \quad A_{1}$

## Problem $42 \square \square \square$ KCSE2022/P2/No. 18

Two bags $P$ and $Q$ contain identical marbles except for the colours. Bag P contains 3 green and 4 read marbles. Bag Q contains 2 green and 3 red marbles.
(a) Find the probability of picking a red marble from bag $P$.

## SOLUTION:

$$
P(\text { red ball })=\frac{4}{7} / \mathrm{B}_{1}
$$

(b) Two marbles were picked at random from bag $P$, one at a time, without replacement.
(i) Draw a probability tree diagram to show all the possible outcomes. (1 mark) SOLUTION:

(ii) Find the probability that the two marbles picked were of the same colour.
SOLUTION:

$$
\begin{aligned}
P(G G) \text { or } P(R R) & =P(G G)+P(R R) \quad P(\text { same colour }) \\
& =\frac{3}{7} \times \frac{2}{6}+\frac{4}{7} \times \frac{3}{6} M_{1}
\end{aligned}
$$

$$
=\frac{3}{7} \quad \sqrt{A_{1}}
$$

(iii) Find the probability that at least one red marble was picked. (2 marks) SOLUTION:

$$
\begin{aligned}
& P(G R) \text { or } P(R G) \text { or } P(R R)=1-P(G G) \quad P \text { (at least one red marble) } \\
& =1-\frac{3}{7} \times \frac{2}{6} \sqrt{M_{1}} \\
& =\frac{6}{7} \quad \sqrt{\mathrm{~A}_{1}} \text { use } \quad \square
\end{aligned}
$$

(c) The marbles picked from bag $P$ in (b) were both put into bag $Q$. A marble was then picked at random from bag $Q$.
Calculate the probability that the marble picked was:
(i) green in colour.

## SOLUTION:

first choossecond choosaird choose outcome Probability

(ii) red in colour.

SOLUTION:

$$
\begin{aligned}
\mathrm{P}(\mathrm{red}) & =1-\frac{20}{49} \sqrt{M_{2}} \\
& =\frac{29}{49} \quad \sqrt{\mathrm{~A}_{1}}
\end{aligned}
$$

## Problem 43■■■ KCSE2022/P2/No. 19

A transformation matrix $T_{1}=\left(\begin{array}{cc}1.5 & 0 \\ 0 & 2\end{array}\right)$ maps a triangle $A B C$ onto triangle $A^{\prime} B^{\prime} C^{\prime}$. Another transformation matrix $T_{2}=\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)$ maps triangle $A^{\prime} B^{\prime} C^{\prime}$ into triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. The coordinates of point $C^{\prime \prime}$ is $(10,8)$ and the area of triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is 15 square units.
(a) (i) Determine the coordinates of C .

## SOLUTION:

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T}_{1} \mathrm{~T}_{2} \\
& =\left(\begin{array}{cc}
1.5 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right)=\left(\begin{array}{cc}
4.5 & -4 \\
3 & -2
\end{array}\right) \sqrt{M_{1}} \\
\mathrm{TC}= & \mathrm{C}^{\prime \prime} \Longrightarrow \mathrm{C}=\mathrm{T}^{-1} \mathrm{C}^{\prime \prime} \\
\mathrm{T}^{-1} & =\frac{1}{3}\left(\begin{array}{cc}
-2 & 4 \\
-3 & 4.5
\end{array}\right)=\left(\begin{array}{cc}
-2 / 3 & 4 / 3 \\
-1 & 3 / 2
\end{array}\right) \quad \sqrt{M_{1}} \\
\mathrm{C} & =\text { T-1} \mathrm{C}^{-1} \\
& =\left(\begin{array}{cc}
-2 / 3 & 4 / 3 \\
-1 & 3 / 2
\end{array}\right)\binom{10}{4} \quad \sqrt{\mathrm{M}_{1}} \\
& =\binom{4}{2}
\end{aligned}
$$

Hence the coordinates of $C$ are $(4,2) \quad B_{1}$
(ii) Determine the area of triangle $A B C$.

## SOLUTION:

$$
\begin{aligned}
A S F & =\operatorname{det}\left(\begin{array}{cc}
4.5 & -4 \\
3 & -2
\end{array}\right)=3 \sqrt{M_{1}} \\
\frac{\text { Area of } A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}}{\text { Area of } A B C} & =3 \\
\frac{15}{\text { Area of } A B C} & =3 \\
\text { Area of } A B C & =\frac{15}{3}=5 \text { square units } / \mathrm{A}_{1}
\end{aligned}
$$

(b) The coordinates of points $B$ and $B^{\prime \prime}$ are $(x, y)$ and $(6 x+1,8)$ respectively. Determine the value of $y$. SOLUTION:

$$
\begin{align*}
\mathrm{T} & =B^{\prime \prime} \\
\left(\begin{array}{cc}
4.5 & -4 \\
3 & -2
\end{array}\right)\binom{x}{y} & =\binom{6 x+1}{8} \\
\binom{4.5 x-4 y}{3 x-2 y} & =\binom{6 x+1}{8} \\
\Longrightarrow 4.5 x-4 y & =6 x+1 \Longrightarrow 1.5 x+4 y=-1 \\
3 x+8 y & =-2 \\
3 x-2 y & =8 \\
10 y & =-10 \\
\Longrightarrow y & =-1
\end{align*}
$$

## Problem 44 ■■ KCSE2022/P2/No. 20

In the diagram below, the vertices of triangle ABC are $\mathrm{A}(0,3), \mathrm{B}(4.5,6)$ and $C(10.5,0)$. Points $P(3,5)$ and $Q(9,1.5)$ lie on lines $A B$ and $B C$ respectively.

(a) Find:
(i) $A Q$

## SOLUTION:

$$
\begin{aligned}
\overrightarrow{A Q} & =\overrightarrow{A O}+\overrightarrow{O Q}=-\overrightarrow{O A}+\overrightarrow{O Q} \\
& =-\binom{0}{3}+\binom{9}{1.5}=\binom{9}{-1.5} \sqrt{\mathrm{~B}_{1}}
\end{aligned}
$$

(ii) CP

SOLUTION:

$$
\begin{aligned}
\overrightarrow{C P} & =\overrightarrow{C O}+\overrightarrow{O P}=-\overrightarrow{O C}+\overrightarrow{O P} \\
& =-\binom{10.5}{0}+\binom{3}{5}=\binom{-7.5}{5} \sqrt{ } \mathrm{~B}_{1}
\end{aligned}
$$

(b) Lines $A Q$ and $C P$ intersect at $X$ such that $C X=k C P$ and $A X=$ $m A Q$ where $k$ and $m$ are scalars.
(i) By expressing OX in two different ways, determine the values of k and m .
SOLUTION:

$$
\begin{aligned}
\overrightarrow{O X} & =\overrightarrow{O C}+\overrightarrow{C X}=\overrightarrow{O C}+k \overrightarrow{C P} \\
& =\binom{10.5}{0}+\mathrm{k}\binom{-7.5}{5} \\
& =\binom{10.5-7.5 \mathrm{k}}{5 \mathrm{k}} \\
\overrightarrow{O X} & =\overrightarrow{O A}+\overrightarrow{A X}=\overrightarrow{O A}+\mathrm{mAQ} \\
& =\binom{0}{3}+\mathrm{m}\binom{9}{-1.5} \\
& =\binom{9 \mathrm{~m}}{3-1.5 \mathrm{~m}} \\
\binom{10.5-7.5 \mathrm{k}}{5 \mathrm{k}} & =\binom{9 \mathrm{~m}}{3-1.5 \mathrm{~m}}
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow 10.5-7.5 \mathrm{k} & =9 \mathrm{~m} \Longrightarrow 9 \mathrm{~m}+7.5 \mathrm{k}=10.5 \\
5 \mathrm{k} & =3-1.5 \mathrm{~m} \Longrightarrow 1.5 \mathrm{~m}+5 \mathrm{k}=3 \\
9 \mathrm{~m}+30 \mathrm{k} & =18 \\
9 \mathrm{~m}+7.5 \mathrm{k} & =10.5 \\
22.5 \mathrm{k} & =7.5 \Longrightarrow \mathrm{k}=\frac{7.5}{22.5}=\frac{1}{3} \quad \sqrt{\mathrm{~A}_{1}} \\
1.5 \mathrm{~m} & =5\left(\frac{1}{3}\right)-3=\frac{4}{3} \\
m & =\frac{1}{1.5} \times \frac{4}{3}=\frac{8}{9}
\end{aligned}
$$

(ii) Determine the exact coordinates of point X .

$$
\begin{aligned}
\overrightarrow{\mathrm{OX}} & =\binom{10.5-7.5(1 / 3)}{5(1 / 3)} \\
& =\binom{8}{5 / 3}=\binom{8}{12 / 3} \quad / \mathrm{M}_{1}
\end{aligned}
$$

Hence the coordinates of $X$ are $(8,12 / 3) . \sqrt{A_{1}}$

## Problem 45 ■■■ KCSE2022/P2/No. 21

(a) Juma bought a house 4 years ago for Ksh. 2500000. The value of the house rose steadily over 4 years to its current value of $K$ sh. 3700000. Calculate, correct to 2 decimal places, the annual rate of appreciation in the value of the house.
SOLUTION:

$$
\begin{aligned}
2500000\left(1+\frac{r}{100}\right)^{4} & =3700000 \\
\left(1+\frac{r}{100}\right)^{4} & =\frac{37}{25} \\
1+\frac{r}{100} & =\sqrt[4]{\frac{37}{25}}=1.102974 / \mathrm{M}_{1} \text { use a } \\
\frac{r}{100} & =0.102974 \\
r & =10.2974 \\
r & \approx 10.30 \%
\end{aligned}
$$

(b) At the time Juma bought the house in 21(a), Tony also bought a car valued at Ksh. 5100000 . The value of the car depreciated steadily at a rate of $2 \%$ every 4 months.
Determine correct to the nearest shilling, the current value of the car.
SOLUTION:

$$
\text { Amount }=5100000\left(1-\frac{2}{100}\right)^{12} \sqrt{M_{1}}
$$

$$
=4002055.29
$$

$$
\sqrt{\mathrm{A}_{1}} \text { use a }
$$

$\approx$ Ksh. 4002055
$\sqrt{\mathrm{B}_{1}}$
(c) The house bought in 21(a) continued to appreciate in value at the same rate while the car bought in 21(b) continued to depreciate in value at the same rate. Determine the number of years from the time of purchase, it would take for the value of the house and that of the car to be equal. Give the answer correct to 1 decimal place.( 4 marks)

## SOLUTION:

Let $\mathrm{t}=$ time in years it takes for the values to be equal.

$$
\begin{aligned}
2500000\left(1+\frac{10.3}{100}\right)^{\mathrm{t}} & =5100000\left(1-\frac{2}{100}\right)^{3 \mathrm{~m}} \sqrt{M_{1}} \text { form an equation } \\
2500000(1.103)^{\mathrm{t}} & =5100000(0.98)^{3 \mathrm{t}} \\
\frac{1.103^{\mathrm{t}}}{0.98^{3 t}} & =\left(\frac{1.103}{0.98^{3}}\right)^{\mathrm{t}}=\frac{51}{25} \\
\operatorname{tlog}\left(\frac{1.103}{0.98^{3}}\right) & =\log \frac{51}{25} \\
\mathrm{t} & =\frac{\log \frac{51}{25}}{\log \left(\frac{1.103}{0.93^{3}}\right)} \\
& =4.4940837 \\
& \approx 4.5 \text { years }
\end{aligned}
$$

## Problem 46 ■■ KCSE2022/P2/No. 22

Fifty teachers in a sub county attended a workshop. The table below shows the distribution of the distances (d) in kilometres travelled by the teachers from their respective school to the training venue.

| Distance d(km) | $0-4$ | $5-9$ | $10-14$ | $15-19$ | $20-24$ | $25-29$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of teachers | 4 | 7 | 11 | 14 | 9 | 5 |
| Cumulative frequency | 4 | 11 | 22 | 36 | 45 | 50 |

(a) On the grid provided, draw a cumulative frequency graph to represent the information above.

| OGIVE MARKING RUBRIC |  |
| :--- | :--- |
| Appropriate scale used | $\sqrt{\mathrm{S}_{1}}$ |
| Plotting of all points correctly | $\sqrt{ } \mathrm{P}_{2}$ |
| Draw a smooth ogive | $\sqrt{ } \mathrm{C}_{1}$ |


(b) Use the graph to estimate:
(i) the median distance.

$$
\text { median }=15.5 \quad B_{1} \text { read from the graph } \cup C L \text { value at } c f=25
$$

(ii) the number of teachers who travelled a distance $\mathbf{d k m}$ where

$$
15 \leq d \leq 23
$$

(3 marks) SOLUTION:
teachers travelled at most $\mathbf{d}=15 \mathrm{~km}:=23$
$B_{1}$ read from the graph
teachers travelled at most $d=23 \mathrm{~km}:=44$
teachers travelled $15 \leq \mathrm{d} \leq 23=44-23+1$
(c) Each of the $75 \%$ of all the teachers who travelled a distance dm where $\mathrm{d} \leq 10 \mathrm{~km}$, used a motor bike and each was charged Kish. 50.
Determine the total amount of money raised by the motor bike operators. (2 marks) SOLUTION:
teachers travelled at most $\mathrm{d}=10 \mathrm{~km}:=12$
teachers travelled by motor bike $=75 \% \times 12=9$

$$
\text { Total amount paid }=9 \times 50=K \text { sh. } 450 \sqrt{ } \mathrm{~B}_{1}
$$

## Problem 47■■■ KCSE2022/P2/No. 23

In an inter school mathematics contest, schools can register teams in junior and senior categories. Information on number of students and the participation fee per team in each category is given in the table below.

|  | Junior category | Senior category |
| :--- | :---: | :---: |
| No. of students per team | 6 | 4 |
| Participating fees per team | Ksh. 2000 | Ksh.3000 |

The organising committee projected to register x junior teams and y senior teams.
(a) For the contest to take place, the following conditions must be satisfied:
(i) At least two junior teams must be registered.
(ii) The number of senior teams must be more than half the number of junior teams.
(iii) The total number of participating students from the two categories must not exceed 48.
(iv) The total amount of money raised from the participation fees must be more than Ksh. 12, 000.
Write down inequalities in x and y that satisfy the conditions.
SOLUTION:

(b) Represent the inequalities in (a) on the grid provided.

## GRAPH MARKING RUBRIC

Plot $x=2, y=\frac{1}{2} x$
Plot $3 x+2 y=24,2 x+3 y=12$
$x \geq 2$ shade left of the line $\sqrt{B_{1}}$
$y>\frac{1}{2} x$,shade below the line $\quad \sqrt{B_{1}}$
$3 x+2 y \leq 24$,shade above the curve $\sqrt{B_{1}}$
$2 x+3 y>12$,shade below the line $\quad \sqrt{ } \mathrm{B}_{1}$

(c) The organising committee expected to make a profit of Ksh. 200 for every junior team and $\boldsymbol{K}$ sh. 500 for every senior team that participated.
Determine the number of teams each category that should be registered in order to maximise the profit.

## SOLUTION:

The point ( $x, y$ ) needed must lie on the corner points as indicated in the required region, $R$ in the graph. These are $(2,9),(6,3)$, $(2,2.6)$ and $(3.2,1.8)$.
(Note that required point $(x, y)$ must be an integer.)
The best value is at $(2,9)$

$$
\begin{aligned}
\text { Thus, junior teams, } x & =2 \sqrt{B_{1}} \text { must be an integer } \\
\text { senior teams, } y & =9 \sqrt{B_{1}} \text { must be an integer }
\end{aligned}
$$

## Problem 48 ■■■ KCSE2O22/P2/No. 24

In this question use a ruler and a pair of compasses.
The line $A B$ draw below is a side of triangle $A B C$ in which $\angle A B C=90^{\circ}$ and $\angle B A C=60^{\circ}$.


| LOCI MARKING RUBRIC |
| :--- | :--- |
| Construct $60^{\circ}$ at A <br> Construct $90^{\circ}$ at B <br> Locate point C and complete the $\sqrt{ } \mathrm{B}_{1}$ <br> triangle <br> Bisect line AC <br> Draw arc centre O from B to A <br> Divide line BC into 4 parts. <br> Draw line parallel to AB through <br> 3rd point <br> Locate points $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ <br> intersection of line and arc$\quad \sqrt{\mathrm{B}_{1}}$ |

(a) Complete triangle $A B C$
(b) Construct the locus of points $P$ such that $\angle A B C=30^{\circ}$.
(2 marks)
(2 marks)
(c) Locate by construction points $Q_{1}$ and $Q_{2}$ which satisfy the conditions below.
(i) $Q_{1}$ and $Q_{2}$ lie on the same side of line $A B$ as $C$.
(ii) Area of $\triangle A Q_{1} B=$ Area of $\triangle A Q_{2} B=\frac{3}{4}$ Area of $\triangle A B C$.
(iii) $\angle A Q_{1} B=\angle A Q_{2} B=30^{\circ}$.

Measure the length of line $Q_{1} Q_{2}$. SOLUTION:

$$
\text { ( } \mathrm{Q}_{1} \mathrm{Q}_{2}=9.0 \mathrm{~cm} / \mathrm{B}_{1} \pm 0.1 \mathrm{~cm}
$$

WARNING(Assumption)
We have assumed:
(b) Construct the locus of points P such that $\angle A P B=30^{\circ}$.
(d) Calculate the area above the line $Q_{1} Q_{2}$ bounded by the locus of points $P$. SOLUTION:

Area of segment $=$ Area of sector $O Q_{1} Q_{2}-$ Area of $\triangle O Q_{1} Q_{2}$

$$
\begin{aligned}
& =\frac{129}{360} \times \pi \times 5 \times 5-\frac{1}{2} \times 5 \times 5 \sin 129^{\circ} \quad\left(M_{2} \text { measure } \angle Q_{1} O Q_{2}\right. \text { in the diagram } \\
& =28.14-9.714 \\
& =18.416 \mathrm{~cm}^{2} \quad
\end{aligned}
$$

