FOOCUS A365

Another Manyamfranchilse.com fraluation test

Atikaschool.com
 Form 1

ADM
NAME
...

1. Find the square root of the following using the factor method
a. 2401
(2mks)
b. 6561
(2mks)
2. Use tables to find the square root of
a. 0.8236
c. 42.57
b. 1.86
d. 641.978
3. The surface area of a sphere of radius r is given by the formula $A=4 \pi r^{2}$. What is the radius of a sphere whose surface area is $120 \mathrm{~cm}^{2}$ (correct to $\mathbf{3}$ decimal places)
(2mks)
4. Solve the following recurring decimals
a. Write $0.08 \dot{5} \dot{5}$ as a fraction in its lowest terms
(2mks)
b. Write $0.0 \dot{2} \dot{3} \dot{4}$ as a fraction in its lowest terms
(2mks)
5. By the use of mathematics tables, find the squares of the following numbers and express your answer in standard form i.e. $\left(\boldsymbol{A} \times \mathbf{1 0}^{\boldsymbol{n}}\right)$
a. 0.004136
(2mks)
b. 17.136
(2mks)
6. Ogasusu spent $\frac{1}{4}$ of his net January salary on school fees. He spent $\frac{1}{4}$ of the remainder on electricity and water bills. He then spent $\frac{1}{9}$ on what was left on transport. If he finally had sh. 3400 , what was his net January salary?
(3mks)
7. Find the value of y in the following equation

$$
\begin{equation*}
\left(-\frac{1}{2}+\left(-\frac{4}{5}\right)\right) \text { of }\left(-\frac{2}{3}+(-y)\right)=\frac{17}{20} \tag{3mks}
\end{equation*}
$$

1.(a)

$$
7 \times 7 \times 7 \times 7
$$

$$
49 \times 49 .
$$

Therefor the square note is 49.
(b)

$$
\begin{aligned}
& 9 \times 9 \times 9 \times 9 \\
& 81 \times 81
\end{aligned}
$$

$\therefore 81$ is the Square not of 6561
(a) (a) 0.8236

Rewrite as $\sqrt{82.36 \times \frac{1}{100}}$

$$
\begin{aligned}
& 9.0752 \times \frac{1}{10} \\
& =0.90752 \\
& 0 r \\
& 9.0752 \times 10^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& 2(b) 1.86 \\
& =1.3638 / 1 \\
& 2(c) 42.57 \\
& \frac{6.5192}{54} \\
& 6.524 .6
\end{aligned}
$$

2(d) 641.978
Rewrite as

$$
\sqrt{6.41978 \times 100}
$$

Round off to 4 S. F

$$
\begin{aligned}
\therefore & \sqrt{6.420 \times 100} \\
= & 2.5338 \times 10 \\
= & 25.338 \\
& 2.5338 \times 10^{\prime}
\end{aligned}
$$

3. $A=4 \pi r^{2}$

But $A=120 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
4 \bar{x} r^{2} & =120 \\
4 \times \frac{22}{7} \times r^{2} & =120 \\
\frac{88}{7} r^{2} & =120 \\
r^{2} & =\frac{3015}{+207} \\
r^{2} & =\frac{105}{28} 11 \\
r^{2} & =9.5454
\end{aligned}
$$

using Matte Metical tables

$$
\begin{aligned}
& r=\sqrt{9.5454} \\
& r=3.0887 \\
& \text { ln 3d.p }={ }^{3.0895}=1
\end{aligned}
$$

4 (a) $0.885 \overline{5}$
Let $r=0.085555$

$$
10 r=0.85555
$$

$$
100 r=8.5555
$$

$$
\begin{aligned}
& 100 r=8.555 \mathrm{~s} \\
& 1000 \mathrm{r}=85.5555
\end{aligned}
$$

$$
1000 r-100 r=85-8
$$

$$
900 r=77
$$

$$
r=\frac{77}{900}
$$

(b) Write $0.0 \div 34$ as a fraction let $r=0.0334234$
$10 r=0.34234$
$100 r=234234$
$1000 r=234323$
100000 $=234.234$
$10000 r-10 r=234-0$
$9990=234$
(5) 240.004136

Rewrite as

$$
\begin{aligned}
& \left(4.136 \times \frac{1}{1000}\right)^{2} \\
& =\frac{17.057}{50} \\
& \frac{17.107}{17} \\
& =17.107 \times \frac{1}{1000000} \\
& = \\
& =1.7107 \times 10 \times \frac{1}{10^{6}} \\
& = \\
& 1.7107 \times 10^{-5}
\end{aligned}
$$

s(b) 17.136^{2}.

$$
\begin{aligned}
& =1.7136 \times 10^{1} \text { Soul off } \\
& =\left(1.714 \times 10^{1}\right)^{2} \quad \text { to } 4 S \cdot F \\
& =\frac{2.924}{14} 2.1 \\
& =2.938 \times 100 \\
& =2.938 \times 10^{2} \mathrm{~V}
\end{aligned}
$$

$6 . \frac{1}{4} \rightarrow$ school foes

$$
R_{\text {em }}=\frac{3}{4}
$$

$\frac{1}{4} \times \frac{3}{4}=\frac{3}{16}$ on electricity \$water

$$
\begin{aligned}
\operatorname{Rem} & =\frac{3}{4}-\frac{3}{16}=\frac{12-3}{16}=\frac{9}{16} \\
\operatorname{Rem} & =\frac{9}{16} \\
\frac{9}{16} \times \frac{1}{9} & =\frac{1}{16} \text { Transport } \\
\frac{9}{16}-\frac{1}{16} & =\frac{8}{16} \operatorname{Rem} \\
1 f \frac{8}{16} & =3400 \mathrm{l} \\
\frac{16}{16} & =\text { ? } \\
& =\frac{16}{16} \times \frac{t^{2}}{8} \times 3400 \\
& =6800 \text { shillings }
\end{aligned}
$$

$$
\text { 7) } \begin{gathered}
\left(-\frac{1}{2}+\left(-\frac{4}{5}\right)\right) \text { of }\left(-\frac{2}{3}+(-y)\right)=\frac{17}{20} \\
\left(-\frac{1}{2}-\frac{4}{5}\right) \text { of }\left(-\frac{2}{3}-y\right)=\frac{17}{20} \\
\frac{-9}{10} \text { of }\left(-\frac{2}{3}-y\right)=\frac{17}{20} \\
-\frac{2}{3}-y=\frac{17}{20} x-\frac{10}{9} \\
-\frac{2}{3}-y=\frac{-17}{18} \\
y=\frac{-12+17}{18} \\
y=\frac{5}{18}
\end{gathered}
$$

