3.2 MATHEMATICS ALT B (122)

In the year 2012 Mathematics Alt B was tested in two papers. **Paper 1 (122/1)** and **Paper 2 (122/2)**. Each paper consisted of two sections: Section 1 (50 marks) short answer questions of not more than four marks each and Section II (50 marks), a choice of eight questions of 10 marks each where candidates answer any five. Paper 1 (122/1) tested mainly Forms 1 and 2 work while Paper 2 (121/2) tested mainly forms 3 and 4 work of the syllabus.

This report is based on an analysis of performance of candidates who sat the year 2012 KCSE Mathematics Alt B.

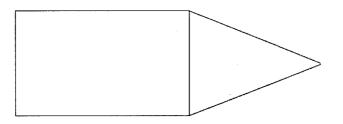
3.2.1 CANDIDATES' GENERAL PERFORMANCE

Year	Paper	Candidature	Maximum score	Mean Score	Standard Deviation
2010	1		100	20.40	16.85
	2	1221	100	17.96	15.91
2011	1		100	12.11	12.75
	2	1247	100	14.65	15.43
	Overall		200	26.64	26.89
2012	1		100	9.27	12.48
	2	1281	100	9.77	13.48
	Overall	1201	200	18.99	25.19

 Table 9: Candidates' Performance in Mathematics Alternative B in the years 2010 - 2012

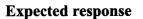
From the table the following observations can be made:

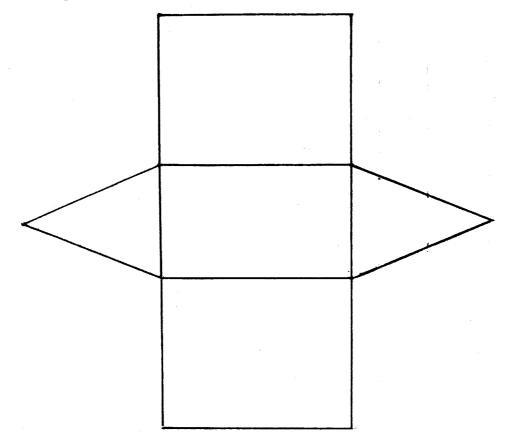
- (i) The subject registered a decline in performance when compared to the previous year's performance.
- (ii) The mean score of the papers was quite low.


INDIVIDUAL QUESTION ANALYSIS

Mathematics Alt B has continued to have a dismal performance since its inception in 2010. With this kind of performance, most questions were poorly performed. The questions discussed below are those considered to be dismally performed.

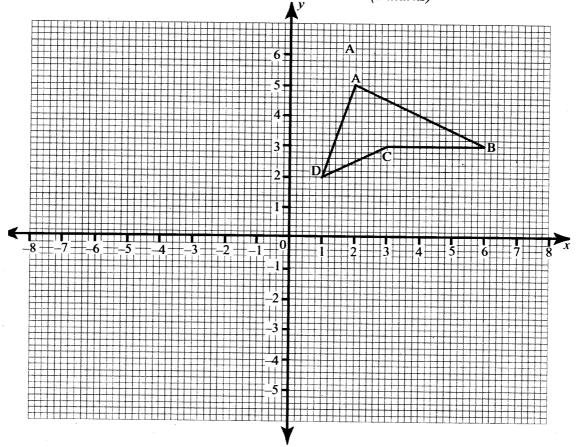
3.2.2 Mathematics Alt. B Paper 1 (122/1)


Question 9


The figure below is part of a net of a triangular prism. Complete the net. (3 marks)

Weaknesses

Most candidates could not draw the net accurately. Some drew the nets of a rectangular pyramid

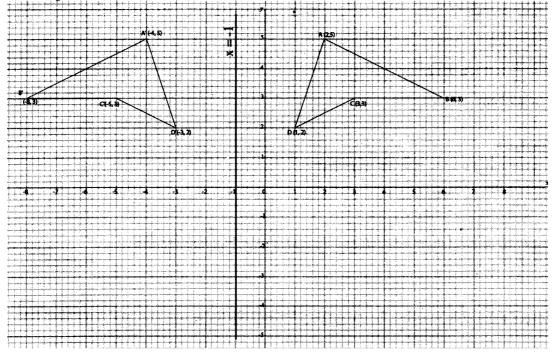


Advice to teachers

Teach different types of solids and their corresponding nets.

Question 11

Quadrilateral ABCD shown below, whose vertices are A(2, 5), B(6, 3), C(3, 3) and D(1, 2) is mapped onto A' B' C' D' by a reflection in the line x = -1. (a) On the grid provided draw the line x = -1 and A' B' C' D'. (2 marks)

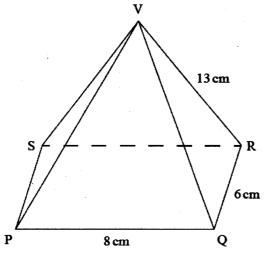


(b) State the type of congruence between quadrilateral ABCD and A' B' C' D'. (1 mark)

Weaknesses

Many candidates could not draw the line x = -1 and instead drew y = -1. Majority also didn't know the type of congruence.

Expected response



Advice to teachers

Give more exercises and help students differentiate between the lines x = a and y = b.

Question 14

The figure below represents a rectangular based pyramid VPQRS. PQ = 8 cm, QR = 6 cm and VP = VQ = VR = VS = 13 cm.

Calculate:

(a) the vertical height of the pyramid;(b) the volume of the pyramid.

(2 marks) (2 marks)

Weaknesses

Candidates were unable to use the Pythagoras theorem to obtain the height of the pyramid, hence could not find the volume.

Expected response

(a) height
$$= \sqrt{13^2 - 5^2}$$

= 12 cm
(b) volume $= \frac{1}{3} \times 8 \times 6 \times 12$
= 192 cm³

Advice to teachers

Teach more thoroughly on the volume of prisms.

Question 15

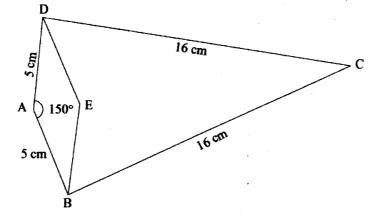
Solve the inequality given below and represent the solution on a number line. -5x - 3 > 2x + 4

(2 marks)

Weaknesses

Many candidates were able to solve the inequality but unable to represent it in the number line.

Expected response


-5x - 3 > 2x + 4 -5x - 2x - 3 > 4 -7x > 7 x < -1 $\underbrace{-6 - 5 - 4 - 3 - 2 - 1 0 1 2$

Advice to teachers

Teach more on the representation of the inequalities on the number line.

Question 18

The figure below shows a kite ABCD and a rhombus ABED. AB = AD = 5 cm, BC = DC = 16 cm and angle $DAB = 150^{\circ}$.

Calculate:

(a) the area of the rhombus ABED; .

(b) (i) the length of diagonal BD, correct to one decimal place; (ii) the area of triangle BCD.

(c) the area of the kite ABCD.

(2 marks) (2 marks) (3 marks) (3 marks)

Weaknesses

Calculation of the length BD was a challenge to most candidates

Expected response

a)
$$2 \times \frac{1}{2} \times 5 \times 5 \sin 150^{\circ}$$

= 12.5 cm²

b) (i)
$$\frac{\frac{1}{2}BD}{5} = \sin 75^{\circ}$$

BD = 9.7

(ii) Area of
$$\triangle$$
 BCD

$$S = \frac{1}{2}(9.7 + 16 + 16) = 20.85$$

$$A = \sqrt{20.85(20.85 - 9.7)(20.85 - 16)^2}$$

$$= \sqrt{20.85 \times 11.15 \times (4.85)^2}$$

$$= 73.95$$

c) Area of kite ABCD $\frac{1}{2} \times 12.5 + 73.95$

 $= 80.2 \text{ cm}^2$

Advice to teachers

Give more questions on application to trigonometry

Question 24

 A room measuring 4x metres by (2x + 2) metres is to be carpeted leaving a uniform margin all around the walls. The dimensions of the carpet are (3x + 1) metres by 2x metres.
 (a) Write an expression for the area of the carpet.
 (1 mark)

 (a) Write an expression for the area of the carpet.
 (1 mark)

 (b) If the area of the margin is 36 square metres, find:
 (3 marks)

 (i) the value of x;
 (3 marks)

 (ii) the area of the carpet.
 (2 marks)

 (c) The carpet costs Ksh 1600 per square metre. The cost of transport and labour is 2.5% of the cost of the carpet. Calculate the total cost of carpeting the room.
 (4 marks)

Weaknesses

Candidates were unable to interpret the question to come up with the required quadratic equations

Expected response

a) $(3x + 1)2x = 6x^2 + 2x$

b) (i)
$$(2x + 2)4x = 6x^2 + 2x + 36$$

 $2x^2 + 6x - 36 = 0$
 $(2x + 12)(x - 3) = 0$
 $x = 3$

(ii) area of carpet

$$= 3(3) + 1 + 2(3)$$

= 10 × 6 = 60m²

c) Cost of carpet

= 60 × 1600 = 96000

Cost of labour = 96000 × 0.025 = 2400

Total cost = 96000 + 2400 = 98400

Advice to teachers

Give more questions on application to quadratic equations

3.2.2 Mathematics Alt. B Paper 2 (122/2)

Question 1

Round off each of the numbers in the expression $169.2 + \frac{92.4 \times 4.9}{14.7}$ correct to one significant figure. Hence find the approximate value of the expression. (3 marks)

Weaknesses

.

Candidates confused significant figures with decimal place.

Expected response

 $200 + \frac{90 \times 5}{10}$ = 245

Advice to teachers

Distinguish clearly between significant figures and decimal places when teaching.

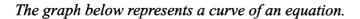
Question 13

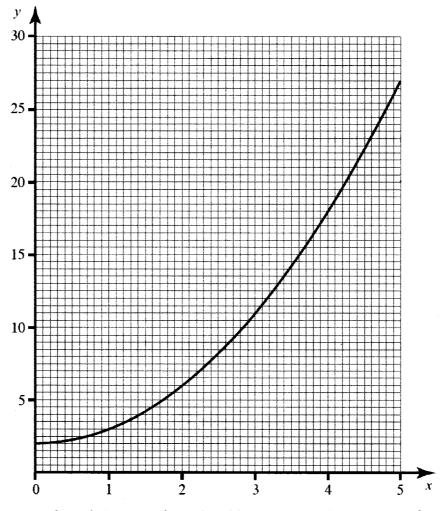
An agent was paid a commission of Ksh 50 000 per annum. The commission was increased by 10% annually. Calculate the total amount of money the agent was paid in 3 years. (3 marks)

Weaknesses

Most candidates could not recognize it is a G.P

Expected response


 $a = 50\,000; r = 1.1$


$$s_n = 50\,000 \times \frac{(1.1)^3 - 1}{1.1 - 1}$$

= 165 500

Advice to teachers

Give more examples on application of G.P

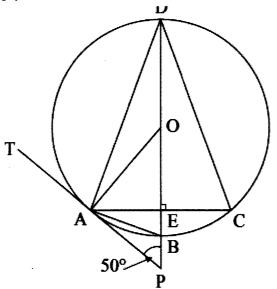
Use the trapezium rule with 5 strips of equal width to estimate the area, in cm^2 , bounded by the curve, the x -axis, x = 0 and x = 5. (3 marks)

Weaknesses

Identifying the ordinates and use of the trapezium rule was a big challenge to the candidates.

Expected response

Advice to teachers


Give more practice ro students on finding the area under a curve.

Question 20

* ***

チャー

In the figure below, O is the centre of the circle of radius 2.5 cm. DOBP is a straight line and is perpendicular to the chord AC at E. Line TP is a tangent to the circle at A and angle $APD = 50^{\circ}$.

(a) Calculate, correct to 2 decimal places, the length of:
(i) OP;
(ii) AP;

(*ii*) AF, (*iii*) AC.

(b) Determine the size of: (i) angle ADC; (ii) angle ACD. (2 marks) (2 marks) (2 marks)

(2 marks) (2 marks)

Weaknesses

Applying trigonometric ratios to find the lengths was a challenge to the candidates

Expected response

(a) (i)

$$OP = \frac{2.5}{\sin 50^{\circ}}$$

 $= 3.26 \text{ cm}$
(ii)
 $AP = \frac{2.5 \sin 40^{\circ}}{\sin 50}$
 $= 2.10$
(iii)
 $AC = 2 \text{ AE}$
 $= 2 \times 2.5 \sin 40^{\circ}$
 $= 3.21$

(b) (i)

 $\angle PAC = 40^{\circ}$ (sum of $\angle s$ in $\triangle AEP$)

 $\angle ADC = 40^{\circ}$ (angle in alt. segment)

(ii)

È

$$\angle ACD = \frac{1}{2}(180^{\circ} - 40^{\circ})$$

= 70°

Advice to teachers

Give students more practice on angle properties of a circle and use of trigonometric ratios

4.1.3 Mathematics Alt. B Paper 1 (122/1)

SECTION I (50 marks)

Answer all the questions in this section in the spaces provided.

1

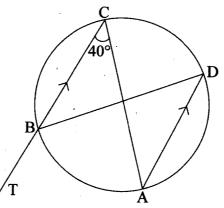
 $\frac{a^2-b^2}{a^2+ab-a-b}$

Simplify the expression

2 Three partners Auma, Barua and Chiku contributed Ksh 200 000, Ksh 300 000 and Ksh 500 000 respectively for a business enterprise. They realised a profit which they shared in the ratio of their contributions. If Auma and Chiku together received Ksh 105 000, calculate the total profit realised from the business. (3 marks)

3 Given that $3^{2y} = 6561$, determine the value of y. (3 marks)

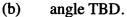
- 4 Given $\tan \theta = \frac{5}{7}$, find the value of $\sin \theta$.
- 5 A solid whose volume is 64 cm has a mass of 30 g. Calculate its density in kg/m


(3 marks)

(2 marks)

(2 marks)

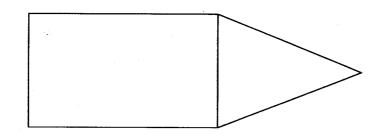
(3 marks)


- 6 A carpenter had three pieces of timber of lengths 40 cm, 56 cm, and 64 cm. He cut the timber into smaller pieces of equal length. Calculate:
 - (a) the greatest possible length of each piece that the carpenter cut; (2 marks)
 - (b) the total number of pieces of timber obtained.
- 7 The circumference of a circle is 31.24 cm. A minor arc of the circle subtends an angle of 81° at the centre. Find the length of the major arc of the circle. (3 marks)
- 8 In the figure below, ABCD is a cyclic quadrilateral. Line TBC is parallel to line AD and angle ACB = 40°.

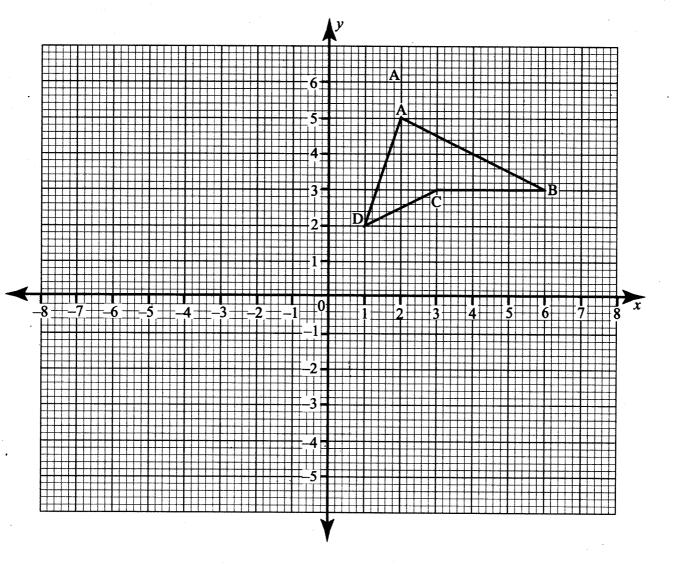
Find the size of:

(a) angle CAD;

(1 mark)



The figure below is part of a net of a triangular prism. Complete the net.

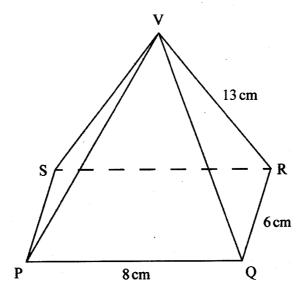

(2 marks)

(3 marks)

(2 marks)

- Express 0.1333... as a fraction in its simplest form. (3 marks)
 Quadrilateral ABCD shown below, whose vertices are A(2, 5), B(6, 3), C(3, 3) and D(1, 2) is mapped onto A' B' C' D' by a reflection in the line x = -1.
 - (a) On the grid provided draw the line x = -1 and A' B' C' D'

(b)


State the type of congruence between quadrilateral ABCD and A'B'C'D' (1 mark)

Powered By: www.manyamfranchise.com

- 12 The radius of a solid cone is 3.5 cm and its slant height is 9 cm. Calculate the total surface area of the cone. (3 marks)
- 13 A tower B is 60 km from a tower A on a bearing of 045°. Tower C is 100 km from tower B on a bearing of 150°. Using scale drawing:
 - (a) show the positions of the towers;
 - (b) determine the distance, in kilometres, from tower A to tower C. (2 marks)

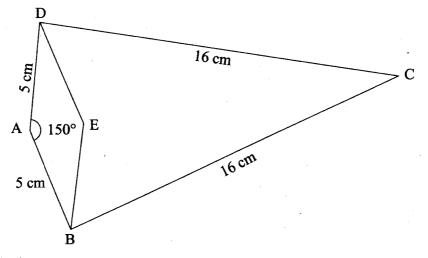
(2 marks)

14 The figure below represents a rectangular based pyramid VPQRS. PQ = 8 cm, QR = 6 cm and VP = VQ = VR = VS = 13 cm.

Calculate:

(a)	the vertical height of the pyramid;	(2 marks)
(b)	the volume of the pyramid.	(2 marks)

- 15 Solve the inequality given below and represent the solution on a number line. (2 marks) -5x - 3 > 2x + 4
- 16 Makau started his journey from village A at 8.00 am. After walking for 12 km at a speed of 4 km/h he arrived at village B. He stayed at village B for 30 minutes. He then took a minibus which travelled at a speed of 72 km/h and arrived at village C at 11.45 am. Calculate the distance between A and C via B.
 (4 marks)


SECTION II (50 marks)

Answer only five questions in this section in the spaces provided.

17 The inside of a rectangular hall measures 15 m long, 9 m wide and 3 m high. There are three doors each measuring 2 m by 2.2 m and six windows each measuring 1.5 m by 1.5 m.

(a) Calculate the total area of the walls to be painted.

- (b) To paint an area of 2.5 m^2 requires one litre of paint. If the paint is sold in 4 litre tins, determine the number of tins of paint that should be bought. (3 marks)
- (c) The cost of a 4 litre tin of paint is Ksh 1700. The painter is paid a fixed charge of Ksh 2 000 and Ksh 30 per square metre of the wall painted. Calculate the total cost of painting the walls.
 (3 marks)
- 18 The figure below shows a kite ABCD and a rhombus ABED. AB = AD = 5 cm, BC = DC = 16 cm and angle DAB = 150°.

Calculate:

(a) the area of the rhombus ABED;

(b)(i)the length of diagonal BD, correct to one decimal place;(2 marks)(ii)the area of triangle BCD.(3 marks)

(c) the area of the kite ABCD.

- 19 (a) The sum of four consecutive odd numbers is 120. If x represents the smallest of the odd numbers, determine the four odd numbers. (4 marks)
 - (b) (i) In a certain shop, the cost of 3 spades and 2 hammers is Ksh 1180 and the cost of 2 spades and one hammer Ksh 680. Find the total cost of one spade and one hammer. (4 marks)
 - (ii) In another shop, the cost of a spade is 10% higher while the cost of a hammer is 5% lower. Find the total cost of one spade and one hammer in the shop.

(2 marks)

(2 marks)

(3 marks)

- 20 (a) A wall of a building is 8 m high. In a photograph of the building, the height of the wall is 10 cm.
 - (i) Find the height of a door in the photograph if its actual height is 2.4 m.

(3 marks)

(ii) The area of a window on the photograph is 1.4 cm□ Calculate the actual area of the window.
 (3 marks)

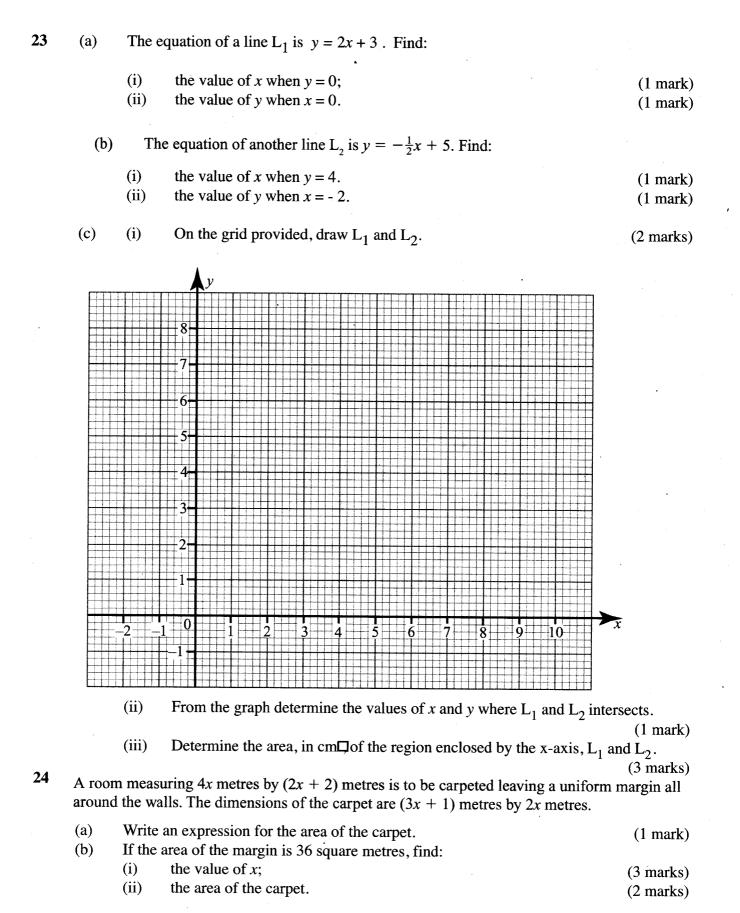
- (b) The surface areas of two similar cuboids are 16 cm and 49 cm
 - (i) Find the volume scale factor of the cuboids.
 - (ii) If the volume of the smaller cuboid is 128 cm³, determine the volume of the bigger cuboid. (2 marks)

21 Line AB shown below is one side of a triangle ABC in which AC = 7 cm and angle BAC =120°. Using a pair of compasses and ruler only:

- (a) Complete triangle ABC.
- (b) On the same diagram as in (a) above,
 - (i) construct a circle that touches the sides of triangle ABC. Measure the radius of the circle. (3 marks)
 - (ii) Construct a perpendicular from C to meet BA produced at N. Measure the length of CN. (2 marks)
- (c) Find the area of the region in the triangle ABC that lies outside the circle. (3 marks)

Α

22 On a certain day, an exchange bureau bought and sold foreign currencies as shown in the table below.


Currency	Buying (Ksh)	Selling (Ksh)
1 US Dollar	80.89	81.06
1 Sterling Pound	128.23	128.55
1 South African Rand	11.60	11.73
1 UAE Dirham	22.02	22.07
1 Euro	107.65	107.93

- (a) A Kenyan businessman intending to travel abroad required 3600 UAE Dirham and 4500 Euros. Calculate the amount of money in Kenya Shillings, that he needed for the exchange.
 (3 marks)
- (b) Another businessman arrived in Kenya in possession of 2000 US dollars and 5000 South African Rands.
 - (i) Calculate the amount of money, in Kenya Shillings, that he obtained after exchanging the foreign currencies. (3 marks)
 - (ii) The businessman used 65% of the money to buy goods in Kenya. He changed the balance of the money into sterling pounds. Calculate the amount of money, to the nearest pound, he obtained. (4 marks)

(2 marks)

(2 marks)

b

(c) The carpet costs Ksh 1600 per square metre. The cost of transport and labour is 2.5% of the cost of the carpet. Calculate the total cost of carpeting the room. (4 marks)

SECTION I (50 Marks)

Answer all the questions in this section in the spaces provided.

1 Round off each of the numbers in the expression $169.2 + \frac{92.4 \times 4.9}{14.7}$ correct to one significant figure. Hence find the approximate value of the expression. (3 marks)

2 Make *n* the subject of the formula $P = \frac{mn}{m^2 - n}$

(3 marks)

- The width of a rectangular garden is 3m shorter than its length. The area of the garden is 108m². Find the length of the garden.
 (3 marks)
- 4 The marks scored by 36 students in a mathematics test are:

46	45	17	35	30	25	16	23	46	36	35	30
45	15	8	44	25	11	9	30	18	42	32	35
31	25	23	19	20	30	47	35	15	10	30	33

Using equal class intervals and starting with the class 1 - 10:

(a) represent the above data in a frequency distribution table; (2 marks)

(b) State the modal class.

5

Ndegeborrowed Ksh 120 000 from a financial institution which charged a simple interest rate per annum. He repaid a total of Ksh 195 600 after 3¹/₂ years. Find the rate of interest charged. (3 marks)

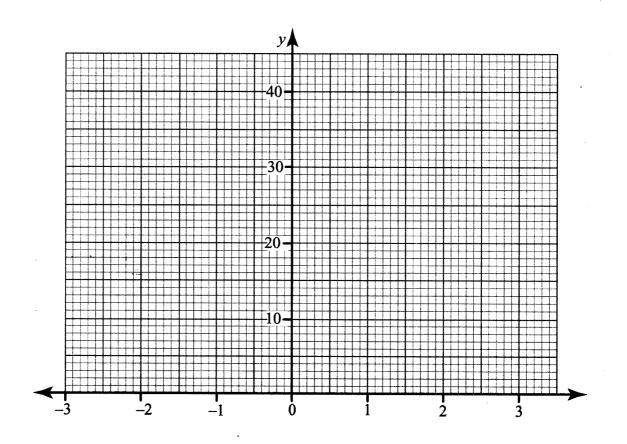
6 Using a ruler and a pair of compasses only:

(a) Construct triangle ABC such that AB = 7cm, angle $CAB = 30^{\circ}$ and angle $ABC = 45^{\circ}$. (2 marks)

- (b) Construct a circle that passes through the vertices of triangle ABC in (a) above. (2 marks)
- 7 Solve the simultaneous equations 2x + y = 511x + 4y = 17

(3 marks)

(1 mark)


- 8 Two points A and B are such that $OA = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ and $AB = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$. Point M is the midpoint of OB. Determine the coordinates of M. (3 marks)
- 9 Three machines A, B and C can complete some work in 10 hours, 15 hours and 18 hours respectively. If all the machines work together for 4 hours, find the fraction of work done. (2 marks)

10 A triangle ABC is such that AB = 8cm, BC = 6cm and angle $ABC = 120^{\circ}$. Calculate the length of AC correct to 2 decimal places. (3 marks)

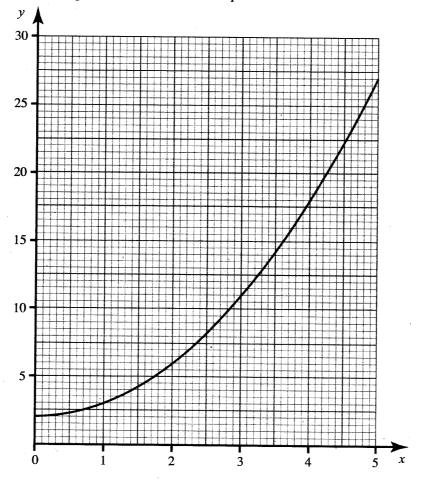
- 11 The equation of a curve is given by $y = 3x^2 + 8$
 - (a) Complete the table below for values of y.

X	- 3	- 2	- 1	0	1	2	3	
у	35		11			20		

(b) On the grid provided, draw the graph of $y = 3x^2 + 8$ for $-3 \le x \le 3$ (2 marks)

(1 mark)

12 In a certain year, Income Tax Rates were as shown in the table below:


Monthly Income (Ksh)	Tax Rate in each shilling
Upto 9680	10%
from 9681 to 18 800	15%
from 18 801 to 27 920	20%
from 27 921 to 37 040	25%
from 37 041 and above	30%

In July that year, Fatuma earned a salary of Ksh 16 420. She was allowed a personal relief of Ksh 1056 per month. Calculate Fatuma's net tax for that month. (4 marks)

13 An agent was paid a commission of Ksh 50 000 per annum. The commission was increased by 10% annually. Calculate the total amount of money the agent was paid in 3 years.

(3 marks)

- 14 A point R is on longitude 6°E while a point S is on longitude 15°W. If the local time at S is 8.30pm, determine the local time at R. (3 marks)
- 15 The vertices of a triangle are P (-3, 1), Q (1, 3) and R (4, -2). The vertices of its image under a transformation are P' (6, -2), Q' (-2, -6) and R' (-8, 4). Determine the transformation matrix that maps PQR onto P'Q'R'. (4 marks)
- 16 The graph below represents a curve of an equation.

Use the trapezium rule with 5 strips of equal width to estimate the area, in cm², bounded by the curve, the x - axis, x = 0 and x = 5. (3 marks)

SECTION II (50 marks)

Answer only *five* questions in this section in the spaces provided.

- 17 A coffee agent has two types of coffee, type X and type Y. Type X costs Ksh 150 per Kg and type Y cost Ksh 240 per Kg.
 - (a) The agent mixed type X and type Y in the ratio 7:3 to make a 20Kg mixture.
 - (i) Calculate the mass of each type in the mixture. (2 marks)
 - (ii) The agent sold the mixture at a profit of 25%. Find the selling price of the mixture. (3 marks)
 - (b) The agent later mixed type X and type Y in the ratio a:b. The cost of the mixture was Ksh 186 per Kg.

Determine:

(iv)

- (i) the ratio a:b; (3 marks)
- (ii) the mass of type X coffee needed to prepare a 500g packet of the mixture.

(2 marks)

18 (a) Given that matrix
$$\mathbf{R} = \begin{pmatrix} x & 3 \\ 2x & 3x \end{pmatrix}$$
 is a singular matrix, find the value of x. (3 marks)

(b) Matrices **A**, **B** and **P** are such that $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{P} = \mathbf{B}\mathbf{A} - 3\mathbf{B}$. Determine:

 (i)
 BA;
 (1 mark)

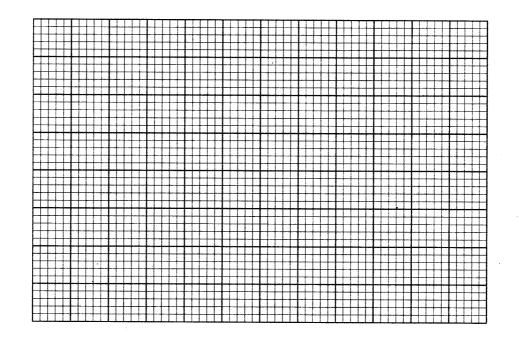
 (ii)
 3**B**;
 (1 mark)

 (iii)
 P;
 (2 marks)

(2 marks) (3 marks)

19 A curve is represented by the equation $y = \sin x^0$.

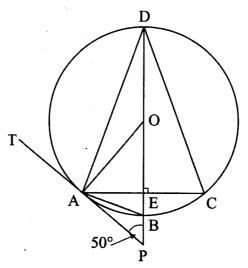
inverse of **P**.


(a) Complete the table below for , $y = \sin x^{\circ}$ giving your answer correct to 2 decimal places. (2 marks)

xo	0	30	60	90	120	150	180	210	240	270
$y = \sin x^{o}$	0	-	0.87	1		0.50	0			

(b)

On the grid provided below, draw the graph of $y = \sin x^{\circ}$ for $0^{\circ} \le x \le 270^{\circ}$


(4 marks)

(c) Use the graph in (b) above to:

(i) determine the value of x^{0} when y = 0.7;	(2 marks)
--	-----------

- (ii) solve the equation, $5\sin x^0 = -2$. (2 marks)
- 20 In the figure below, O is the centre of the circle of radius 2.5cm. DOBP is a straight line and is perpendicular to the chord AC at E. Line TP is a tangent to the circle at A and angle $APD = 50^{\circ}$.

(a)

OP

AC

11)

(iii)

Calculate, correct to 2 decimal places, the length of:

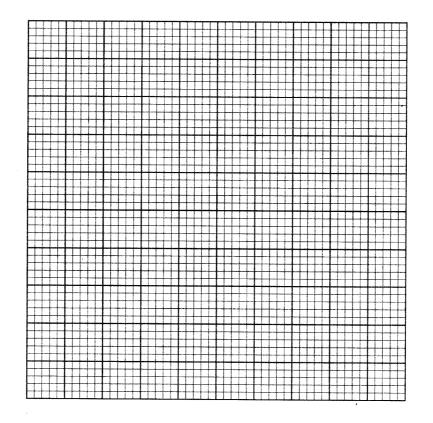
	(2 marks) (2 marks) (2 marks)
	(2 marks)

(b) Determine the size of:

(i)	angle ADC;	(2 marks)
(ii)	angle ACD.	(2 marks)
()	ungio i robi	(2 marks)

- 21 Mutuku bought a car for Ksh 500 000. The value of the car depreciated at the rate of 10% p.a for 3 years.
 - (a) Determine the value of the car at the end of the 3 years. (3 marks)
 - (b) Mutuku sold the car at the value calculated in (a) above and used the money to buy a piece of land. The value of the land appreciated at the rate of 15% p.a. for the first year.
 - (i) Calculate the value of the land at the end of the first year. (2 marks)
 - (ii) The value of the land then appreciated at the rate of 12% p.a. in the next two years. Calculate the value of the land, to the nearest shilling, at the end of the two years. (2 marks)
 - (c) Determine, to 3 significant figures, the percentage gain in Mutuku's land investment at the end of the 3 years. (3 marks)
- 22 A box contains 3 red balls, 3 blue balls and 2 green balls. All the balls are identical except for the colour. Two balls are picked at random from the box one at a time without replacement.

(a)	Using a tree diagram, show all the possible outcomes.	(2 marks)
(h)	Use the tree diagram to calculate the probability that	


- (b) Use the tree diagram to calculate the probability that:
 - (i)both balls are red;(2 marks)(ii)one ball is red and the other is green;(3 marks)(iii)both balls are of different colours.(3 marks)

23 The table below shows masses, to the nearest Kg, of patients who visited a health centre on a certain day.

Mass (Kg)	30 - 39	40 - 49	50 - 59	60 - 69	70 – 79	80 - 89	90 - 99
Frequency (f)	2	5	25	60	27	12	5

(a) On the grid provided below draw a cumulative frequency curve for the data.

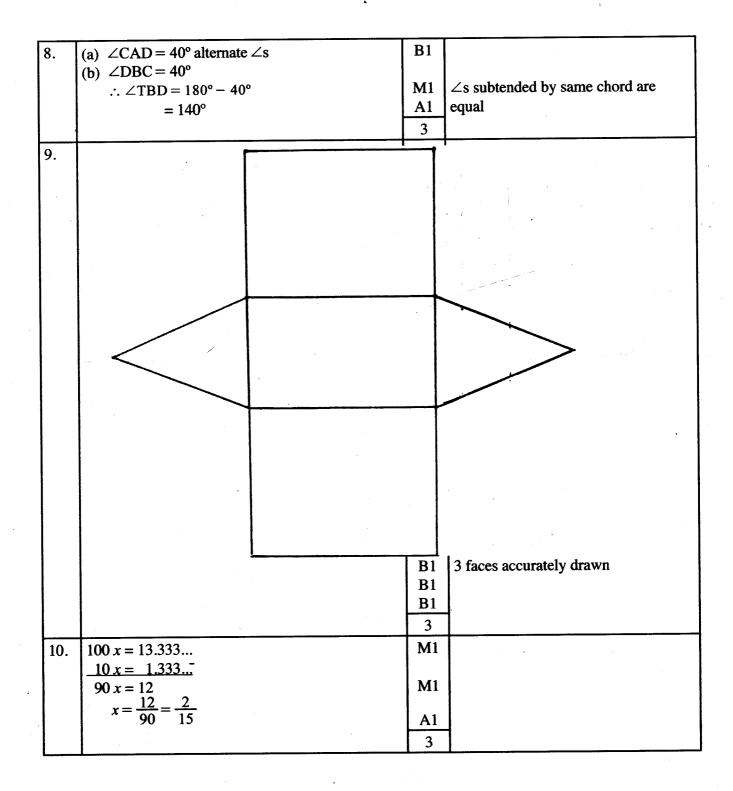
(6 marks)

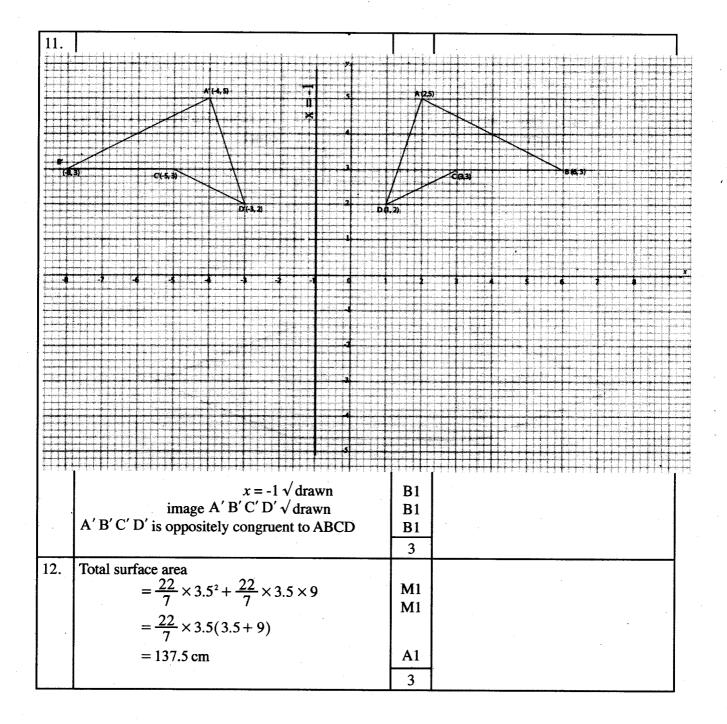
(b) Use the graph to estimate:

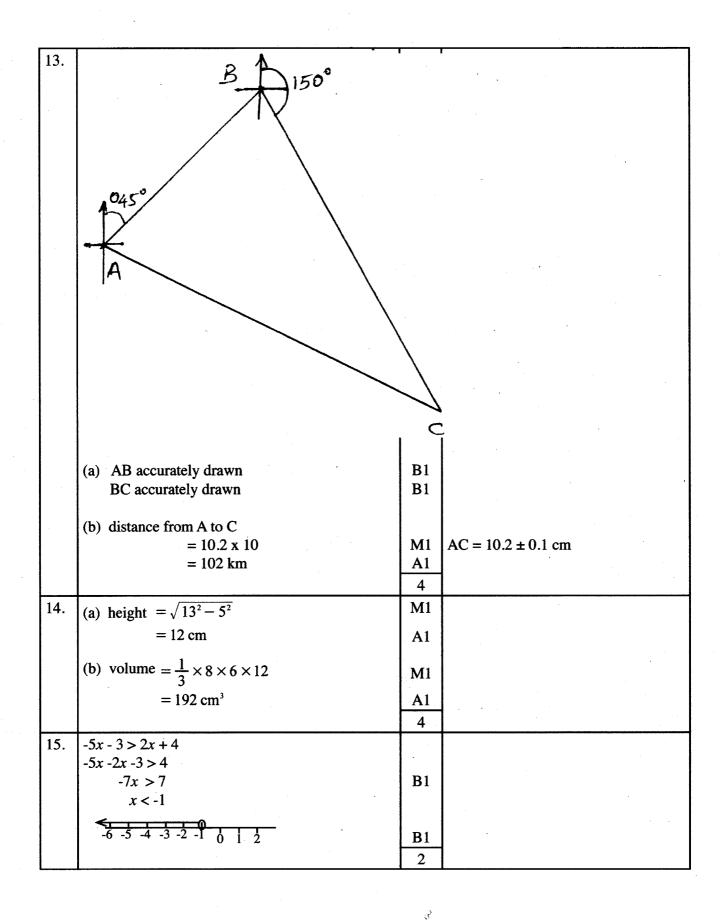
24

1

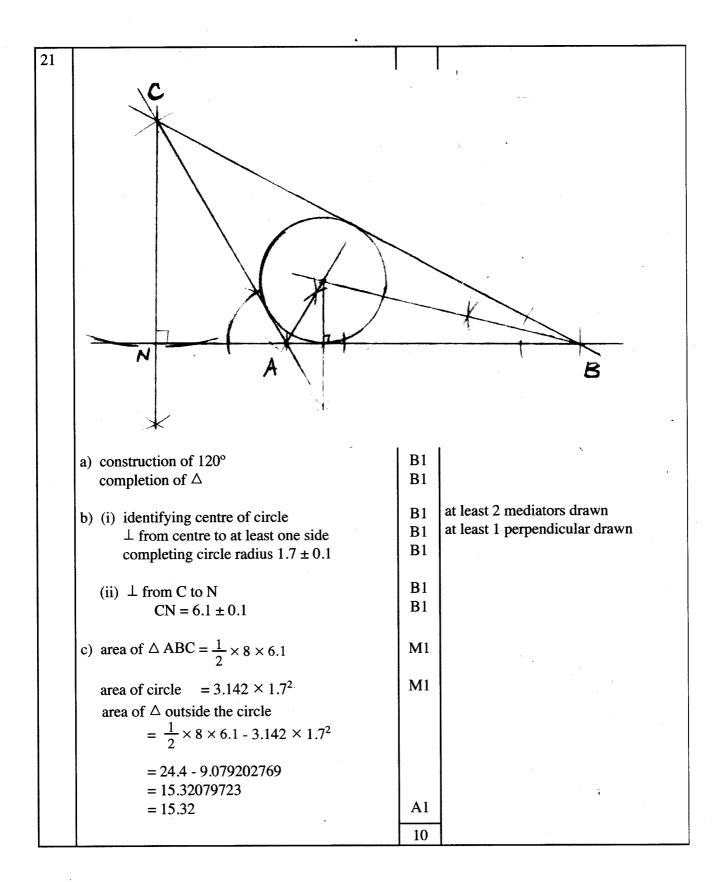
•			the median mass; the number of patients whose mass was less than or equal to 50.5Kg. es S, T and R are such that S varies directly as T and inversely as R. T = 9 and $R = 4$.	(2 marks) (2 marks)
	(a)	(i) (ii) (iii)	Determine the constant of proportionality. Express S in terms of T and R. Find the value of T when $S = 108$ and $R = 6$.	(3 marks) (1 mark) (3 marks)

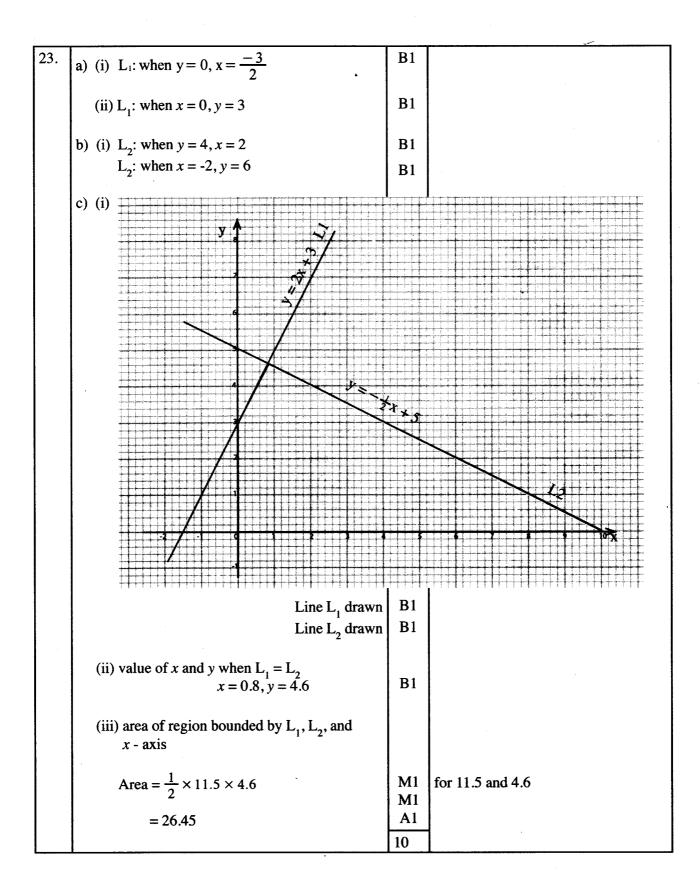

(b) Determine the percentage change in S if R is increased by 20%. (3 marks)


5.1.3 Mathematics Alternative B (122/1)


ь

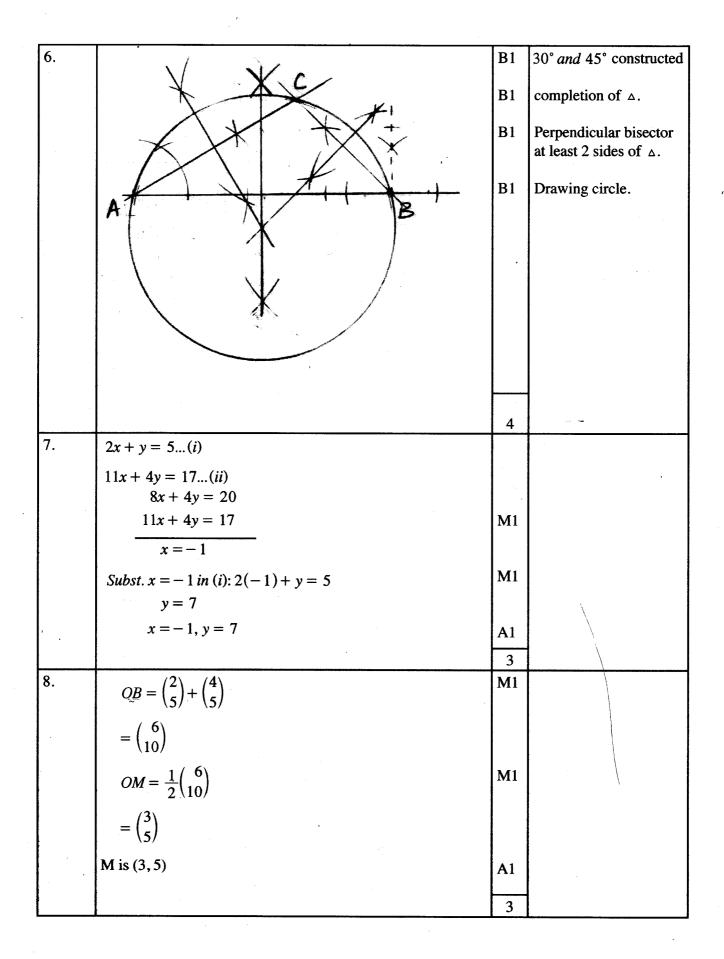
1.	$a^2 - b^2$ _ (a + b)(a - b)		
ŀ	$\frac{a^2 - b^2}{a^2 + ab - a - b} = \frac{(a + b)(a - b)}{a(a + b) - 1(a + b)}$	M1	
	$=\frac{(\mathbf{a}+\mathbf{b})(\mathbf{a}-\mathbf{b})}{(\mathbf{a}-1)(\mathbf{a}+\mathbf{b})}$		
	$-\frac{1}{(a-1)(a+b)}$	M1	
	$=\frac{a-b}{a-1}$	A 1	
	a – 1	A1	
		3	
2.	Auma: Barua: Chiku = 2:3:5	B 1	
	Total profit = $\frac{105000}{7} \times 10$	M1	
	= 150000	A1	
		3	
3.	$6561 = 3^8$	B 1	
	$3^{2y} = 3^8$		· · ·
	2y = 8	M1	
	y = 4	A1	
		3	·
4.	Hypotenuse = $\sqrt{7^2 + 5^2}$	M1	or Alternative
	$=\sqrt{74}$		
·	•		
	$\sin \theta = \frac{5}{\sqrt{74}}$	A1	
	or $= 0.5812$		
	0.5012	2	
5.	Density in g/cm ³ = $\frac{30}{64}$	M1	
	01		
	Density in km/m ³ = $\frac{\frac{30}{1000}}{\frac{64}{100}}$	M1	
	$\frac{64}{100}$		
	$= 468.75 \text{ kg/m}^3$	A1	
		3	
6.	(a) $40 = 2^3 \times 5$; $56 = 2^3 \times 7$; $64 = 2^6$	M1	
	Greatest length of pieces = $2^3 = 8$	A1	
	$\frac{1}{2} = 0$		and the second sec
	(b) $(40 \div 8) + (56 \div 8) + (64 \div 8)$	M1	
		A 1	
	= 20	A1	
		4	
7.	Length of minor arc	N 1	ALTERNATIVE
	$=\frac{81}{360} \times 31.24$	M1	Angle of major sector = $360^{\circ} - 81^{\circ}$
	= 7.029		$= 300^{\circ} - 81^{\circ}$ = 279°
	Length of major arc		Length of major arc
	= 31.24 - 7.029	M1	$=\frac{279^{\circ}}{360^{\circ}} \times 31.24$
.	= 24.211	-A1	= 24.211
-		3	

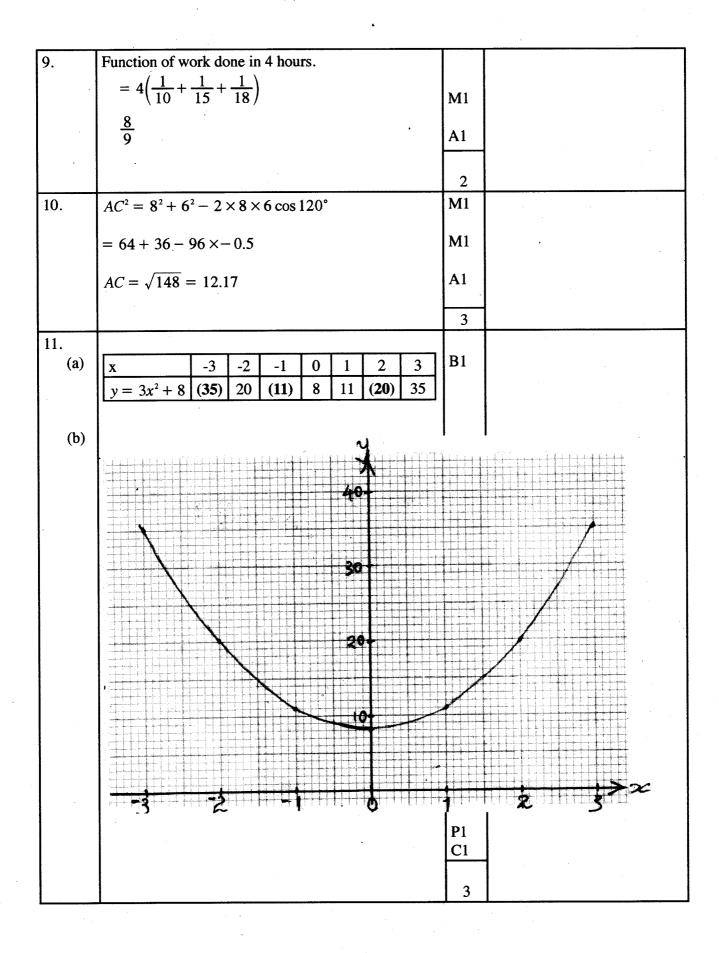



16.	Time at stop B $8.00 + \frac{12}{4}h = 11.00$	B 1	
	Time taken to C from B		
	11.45 - 11.30 = 15 minutes	B 1	
	$Distance = 12 + \frac{15}{60} \times 72$	M 1	
	= 30 km	A 1	
		4	
17.	a) Area to be painted		
	$2(15 \times 3 + 9 \times 3) - (2 \times 2.2 \times 3 + 1.5 \times 1.5 \times 6)$	M 1	area of walls
		M1	area of doors and windows
		M1	difference
	$= 117.3 \text{ m}^2$	A1	
	b) No. of tins required		
	$=\frac{117.3}{4 \times 2.5}$	M 1	
	= 11.73	A1	
		B1	
	$\simeq 12$ tins	ית	
1			
	c) Total cost:	M 1	cost of paint
	$12 \times 1700 + (2000 + 30 \times 117.3)$	M1 M1	sum of cost of paint, standing charge
		1411	and labour
	St 25010	A 1	
	= Sh 25919	A1	
		10	L

18. a) $2 \times \frac{1}{2} \times 5 \times 5 \sin 150^{\circ}$ MI $= 12.5 \text{ cm}^{2}$ A1 b) (i) $\frac{+BD}{5} = \sin 75^{\circ}$ MI BD = 9.7 A1 (ii) Area of $\triangle BCD$ $S = \frac{1}{2}(9.7 + 16 + 16) = 20.85$ A1 $A = \sqrt{20.85 \times 11.15 \times (4.83)^{2}}$ A1 = 73.95 A1 c) Area of kite ABCD MI $\frac{1}{2} \times 12.5 + 73.95$ A1 10 19. a) odd numbers after x x + 2, x + 4, x + 6 x + (x + 2) + (x + 4) + (x + 6) = 120 A1 4x = 120 - 12 A1 x = 27 A1 b (i) $3p + 2m = 1180$ (ii) $2p + m = 680$ B1 2p + m = 680 B1 3p + 2m = 1180 (iii) 2p + m = 680 B1 3p + 2m = 1180 (iii) p = 180 substitute $p = 180$ in (ii) $2 \times 180 + m = 680$ A1 m = 320 p p + m = 180 + 320 = 500 A1 for $p = 180$ and $m = 320$ P p + m = 180 + 320 = 500 A1 10			r	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c} = 12.5 \text{ cm}^{2} \\ \text{b} (i) \frac{+\text{BD}}{5} = \sin 75^{\circ} \\ \text{BD} = 9.7 \\ \text{(ii) Area of Δ BCD} \\ S = \frac{1}{2}(9.7 + 16 + 16) = 20.85 \\ A = \sqrt{20.85}(20.85 - 9.7)(20.85 - 16)^{2} \\ = \sqrt{20.85} \times 11.15 \times (4.85)^{2} \\ .= 73.95 \\ \text{(c) Area of kite ABCD} \\ \frac{1}{2} \times 12.5 + 73.95 \\ = 80.2 \text{ cm}^{2} \\ \text{(d)} \\ \frac{1}{2} \times 12.5 + 73.95 \\ \text{(c) Area of kite ABCD} \\ x + 2, x + 4, x + 6 \\ x + (x + 2) + (x + 4) + (x + 6) = 120 \\ 4x = 120 - 12 \\ x = 27 \\ \therefore \text{ odd numbers: } 27, 29, 31, 33 \\ \text{(b) (i) } 3p + 2m = 1180 \\ 2p + m = 680 \\ 3p + 2m = 1180 \dots (i) \\ 2p + m = 680 \\ 3p + 2m = 1180 \dots (i) \\ 3p + 2m = 1180 \dots (i) \\ p = 180 \\ \text{substitute } p = 180 \text{ in (ii)} \\ p = 180 \\ \text{substitute } p = 180 \text{ in (ii)} \\ p = 180 \\ \text{(ii) } 180 \times 1.1 + 320 \times 0.95 \\ 198 + 304 = 502 \\ \end{array} $	18.	a) $2 \times \frac{1}{2} \times 5 \times 5 \operatorname{Sin} 150^{\circ}$	M1	
BD = 9.7 A1 (ii) Area of \triangle BCD $S = \frac{1}{2}(9.7 + 16 + 16) = 20.85$ $A = \sqrt{20.85(20.85 - 9.7)(20.85 - 16)^2}$ $= \sqrt{20.85 \times 11.15 \times (4.85)^2}$ = 73.95 A1 (c) Area of kite ABCD $\frac{1}{2} \times 12.5 + 73.95$ $= 80.2 \text{ cm}^2$ 10 19. a) odd numbers after x x + 2, x + 4, x + 6 x + (x + 2) + (x + 4) + (x + 6) = 120 4x = 120 - 12 x = 27 \therefore odd numbers: 27, 29, 31, 33 b) (i) 3p + 2m = 1180 2p + m = 680 3p + 2m = 1180(i) 2p + m = 680(ii) 3p + 2m = 1180(ii) 3p + 2m = 1180(ii) p = 180 substitute p = 180 in (ii) $2 \times 180 + m = 680$ (ii) $180 \times 1.1 + 320 \times 0.95$ (iii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 b) (i) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 b) (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		$= 12.5 \text{ cm}^2$	A 1	
BD = 9.7 A1 (ii) Area of \triangle BCD $S = \frac{1}{2}(9.7 + 16 + 16) = 20.85$ $A = \sqrt{20.85(20.85 - 9.7)(20.85 - 16)^2}$ $= \sqrt{20.85 \times 11.15 \times (4.85)^2}$ = 73.95 A1 (c) Area of kite ABCD $\frac{1}{2} \times 12.5 + 73.95$ $= 80.2 \text{ cm}^2$ 10 19. a) odd numbers after x x + 2, x + 4, x + 6 x + (x + 2) + (x + 4) + (x + 6) = 120 4x = 120 - 12 x = 27 \therefore odd numbers: 27, 29, 31, 33 b) (i) 3p + 2m = 1180 2p + m = 680 3p + 2m = 1180(i) 2p + m = 680(ii) 3p + 2m = 1180(ii) 3p + 2m = 1180(ii) p = 180 substitute p = 180 in (ii) $2 \times 180 + m = 680$ (ii) $180 \times 1.1 + 320 \times 0.95$ (iii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 b) (i) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 b) (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	_ ·	b) (i) $\frac{\frac{1}{2}BD}{5} = Sin 75^{\circ}$	M1	
$S = \frac{1}{2}(9.7 + 16 + 16) = 20.85$ $A = \sqrt{20.85(20.85 - 9.7)(20.85 - 16)^{2}}$ $= \sqrt{20.85 \times 11.15 \times (4.85)^{2}}$ $= 73.95$ $A1$ $M1$ $\frac{1}{2} \times 12.5 + 73.95$ $= 80.2 \text{ cm}^{2}$ $A1$ 10 $19. a) odd numbers after x x + 2, x + 4, x + 6 x + (x + 2) + (x + 4) + (x + 6) = 120 4x = 120 - 12 x = 27 A1 B1 M1 \frac{1}{2} \times 12.5 + 73.95 x = 27 A1 B1 B1 for 3p + 2m = 1180 2p + m = 680 3p + 2m = 1180 2p + m = 680 3p + 2m = 1180 M1 p = 180 3p + 2m = 1180 M1 for equivalent M1 for p = 180 and m = 320 p + m = 180 + 320 = 500 M1 A1 B1$		5	A1	
$S = \frac{1}{2}(9.7 + 16 + 16) = 20.85$ $A = \sqrt{20.85(20.85 - 9.7)(20.85 - 16)^{2}}$ $= \sqrt{20.85 \times 11.15 \times (4.85)^{2}}$ $= 73.95$ $A1$ $M1$ $\frac{1}{2} \times 12.5 + 73.95$ $= 80.2 \text{ cm}^{2}$ $A1$ 10 $19. a) odd numbers after x x + 2, x + 4, x + 6 x + (x + 2) + (x + 4) + (x + 6) = 120 4x = 120 - 12 x = 27 A1 B1 M1 \frac{1}{2} \times 12.5 + 73.95 x = 27 A1 B1 B1 for 3p + 2m = 1180 2p + m = 680 3p + 2m = 1180 2p + m = 680 3p + 2m = 1180 M1 p = 180 3p + 2m = 1180 M1 for equivalent M1 for p = 180 and m = 320 p + m = 180 + 320 = 500 M1 A1 B1$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			B 1	
$ = \sqrt{20.85 \times 11.15 \times (4.85)^2} $ $ = 73.95 $ (A1) $ = 80.2 \text{ cm}^2 $ (A1) $ = 80.2 \text{ cm}^2 $ (A1) $ = 80.2 \text{ cm}^2 $ (A1) $ = 10 $ (B) $ = 80.2 \text{ cm}^2 $ (A1) $ = 10 $ (B) $ = 80.2 \text{ cm}^2 $ (A1) $ = 10 $ (B) $ = 120 \text{ cm}^2 $ (A1) $ = 110 $ (B) $ = 120 \text{ cm}^2 $ (A1) $ = 110 $ (A1) $ = 1180 $ (A1) $ = 1180 $ (A1) $ = 180 \text{ cm}^2 $		2	M1	
$\begin{bmatrix} -73.95 \\ -73.95 \\ -73.95 \\ -73.95 \\ -80.2 \text{ cm}^2 \\ $				
$ \frac{\frac{1}{2} \times 12.5 + 73.95}{= 80.2 \text{ cm}^2} \qquad M1 \\ = 80.2 \text{ cm}^2 \qquad A1 \\ 10 $ 19. a) odd numbers after x x + 2, x + 4, x + 6 $x + (x + 2) + (x + 4) + (x + 6) = 120$ $4x = 120 - 12$ $x = 27$ A1 \therefore odd numbers: 27, 29, 31, 33 B1 b) (i) $3p + 2m = 1180$ $2p + m = 680$ $3p + 2m = 1180$ (i) $2p + m = 680$ (ii) $3p + 2m = 1180$ (i) $3p + 2m = 1180$ (ii) $3p + 2m = 1180$ (ii) $3p + 2m = 1180$ (ii) $3p + 2m = 1360$ (ii) $3p + 2m = 1360$ (iii) $p = 180$ substitute $p = 180$ in (ii) $2 \times 180 + m = 680$ $m = 320$ $p + m = 180 + 320 = 500$ (ii) $180 \times 1.1 + 320 \times 0.95$ $198 + 304 = 502$ M1 A1			A1	
$ \frac{\frac{1}{2} \times 12.5 + 73.95}{= 80.2 \text{ cm}^2} \qquad M1 \\ = 80.2 \text{ cm}^2 \qquad A1 \\ 10 $ 19. a) odd numbers after x x + 2, x + 4, x + 6 $x + (x + 2) + (x + 4) + (x + 6) = 120$ $4x = 120 - 12$ $x = 27$ A1 \therefore odd numbers: 27, 29, 31, 33 B1 b) (i) $3p + 2m = 1180$ $2p + m = 680$ $3p + 2m = 1180$ (i) $2p + m = 680$ (ii) $3p + 2m = 1180$ (i) $3p + 2m = 1180$ (ii) $3p + 2m = 1180$ (ii) $3p + 2m = 1180$ (ii) $3p + 2m = 1360$ (ii) $3p + 2m = 1360$ (iii) $p = 180$ substitute $p = 180$ in (ii) $2 \times 180 + m = 680$ $m = 320$ $p + m = 180 + 320 = 500$ (ii) $180 \times 1.1 + 320 \times 0.95$ $198 + 304 = 502$ M1 A1		c) Area of kite ARCD	MI	
19. a) odd numbers after x 10 19. a) odd numbers after x B1 $x + 2, x + 4, x + 6$ B1 $x + (x + 2) + (x + 4) + (x + 6) = 120$ M1 $4x = 120 - 12$ A1 $x = 27$ A1 \therefore odd numbers: 27, 29, 31, 33 B1 b) (i) $3p + 2m = 1180$ B1 $2p + m = 680$ B1 $3p + 2m = 1180$ B1 $3p + 2m = 1180$ M1 $3p + 2m = 1180$ M1 $p + m = 680$ M1 $y = 180$ M1 $y = 1360$ M1 $y = 180$ M1 $y = 180 + 320 = 500$ M1 $(i) 180 \times 1.1 + 320 \times 0.95$ M1 $(ii) 180 \times 1.1 + 320 \times 0.95$ M1 $108 + 304 = 502$ M1			1	
19. a) odd numbers after x x + 2, x + 4, x + 6 x + (x + 2) + (x + 4) + (x + 6) = 120 4x = 120 - 12 x = 27 \therefore odd numbers: 27, 29, 31, 33 b) (i) $3p + 2m = 1180$ 2p + m = 680 3p + 2m = 1180(i) 2p + m = 680(ii) 3p + 2m = 1180(ii) 3p + 2m = 1180(ii) p = 180 substitute $p = 180$ in (ii) $2 \times 180 + m = 680$ m = 320 p + m = 180 + 320 = 500 (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 B1 M1 A1 B1 b) (i) $2x + 1180 + 200 = 502$ M1 A1 B1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B		$= 80.2 \text{ cm}^2$	A1	
19. a) odd numbers after x x + 2, x + 4, x + 6 x + (x + 2) + (x + 4) + (x + 6) = 120 4x = 120 - 12 x = 27 \therefore odd numbers: 27, 29, 31, 33 b) (i) $3p + 2m = 1180$ 2p + m = 680 3p + 2m = 1180(i) 2p + m = 680(ii) 3p + 2m = 1180(ii) 3p + 2m = 1180(ii) p = 180 substitute $p = 180$ in (ii) $2 \times 180 + m = 680$ m = 320 p + m = 180 + 320 = 500 (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 B1 M1 A1 B1 b) (i) $2x + 1180 + 200 = 502$ M1 A1 B1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B			10	1
$\begin{array}{c} x + 2, x + 4, x + 6 \\ x + (x + 2) + (x + 4) + (x + 6) = 120 \\ 4x = 120 - 12 \\ x = 27 \\ \therefore \text{ odd numbers: } 27, 29, 31, 33 \end{array} \qquad \begin{array}{c} \text{B1} \\ \text{M1} \\ \text{A1} \\ \text{B1} \\ \end{array}$	19	a) odd numbers after x		
$ \begin{array}{c} x + (x + 2) + (x + 4) + (x + 6) = 120 \\ 4x = 120 - 12 \\ x = 27 \\ \therefore \text{ odd numbers: } 27, 29, 31, 33 \\ b) (i) 3p + 2m = 1180 \\ 2p + m = 680 \\ 3p + 2m = 1180 \dots (i) \\ 2p + m = 680 \dots (ii) \\ 3p + 2m = 1180 \dots (ii) \\ 3p + 2m = 1180 \dots (ii) \\ p = 180 \\ \text{substitute } p = 180 \text{ in (ii)} \\ p = 180 \\ \text{substitute } p = 180 \text{ in (ii)} \\ p + m = 180 + 320 = 500 \\ (ii) 180 \times 1.1 + 320 \times 0.95 \\ 198 + 304 = 502 \\ \end{array} $	17.		B1	
$4x = 120 - 12$ $x = 27$ $\therefore \text{ odd numbers: } 27, 29, 31, 33$ b) (i) $3p + 2m = 1180$ $2p + m = 680$ $3p + 2m = 1180 \dots (i)$ $2p + m = 680 \dots (ii)$ $3p + 2m = 1180 \dots (ii)$ $3p + 2m = 1180 \dots (ii)$ $p = 180$ substitute $p = 180$ in (ii) p = 180 $substitute p = 180 in (ii)2 \times 180 + m = 680 m = 320 p + m = 180 + 320 = 500 (ii) 180 \times 1.1 + 320 \times 0.95 198 + 304 = 502 A1 B1 or an = 320 M1 A1 b1 A1 b1 b1$				
$ \begin{array}{c} \therefore \text{ odd numbers: } 27, 29, 31, 33 \\ \text{b) (i) } 3p + 2m = 1180 \\ 2p + m = 680 \\ 3p + 2m = 1180 \dots (i) \\ 2p + m = 680 \dots (ii) \\ 3p + 2m = 1180 \dots (ii) \\ 4p + 2m = 1360 \dots (ii) \\ p = 180 \\ \text{substitute } p = 180 \text{ in (ii)} \\ 2 \times 180 + m = 680 \\ m = 320 \\ p + m = 180 + 320 = 500 \\ (ii) 180 \times 1.1 + 320 \times 0.95 \\ 198 + 304 = 502 \end{array} $				
b) (i) $3p + 2m = 1180$ 2p + m = 680 3p + 2m = 1180 (i) 2p + m = 680 (ii) 3p + 2m = 1180 (ii) 4p + 2m = 1360 (iii) p = 180 substitute $p = 180$ in (ii) $2 \times 180 + m = 680$ m = 320 p + m = 180 + 320 = 500 (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 B1 M1 A1 B1 M1 b) for $3p + 2m = 1180$ or $2p + m = 1180$ or equivalent A1 B1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		x = 27	A1	
2p + m = 680 $3p + 2m = 1180 \dots (i)$ $2p + m = 680 \dots (ii)$ $3p + 2m = 1180 \dots (ii)$ $4p + 2m = 1360 \dots (ii)$ p = 180 substitute p = 180 in (ii) $2 \times 180 + m = 680$ m = 320 p + m = 180 + 320 = 500 (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 or $2p + m = 680$ M1 or equivalent A1 B1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		odd numbers: 27, 29, 31, 33	B 1	
$\begin{array}{c} 3p + 2m = 1180 \dots (i) \\ 2p + m = 680 \dots (ii) \\ 3p + 2m = 1180 \dots (ii) \\ 4p + 2m = 1360 \dots (ii) \\ p = 180 \\ \\ substitute p = 180 in (ii) \\ 2 \times 180 + m = 680 \\ m = 320 \\ p + m = 180 + 320 = 500 \\ \\ (ii) 180 \times 1.1 + 320 \times 0.95 \\ 198 + 304 = 502 \end{array} \qquad $		b) (i) $3p + 2m = 1180$	B 1	for $3p + 2m = 1180$
$2p + m = 680 \dots (ii)$ $3p + 2m = 1180 \dots (ii)$ $4p + 2m = 1360 \dots (iii)$ $p = 180$ substitute p = 180 in (ii) $2 \times 180 + m = 680$ $m = 320$ $p + m = 180 + 320 = 500$ (ii) $180 \times 1.1 + 320 \times 0.95$ $198 + 304 = 502$ M1 A1 or equivalent A1 B1 M1 A1 A1		2p + m = 680		or $2p + m = 680$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3p + 2m = 1180 (i)		
$4p + 2m = 1360 \dots (iii)$ $p = 180$ substitute p = 180 in (ii) 2 × 180 + m = 680 m = 320 p + m = 180 + 320 = 500 (ii) 180 × 1.1 + 320 × 0.95 198 + 304 = 502 A1 B1 M1 A1		2p + m = 680 (ii)		
p = 180 substitute p = 180 in (ii) 2 × 180 + m = 680 m = 320 p + m = 180 + 320 = 500 (ii) 180 × 1.1 + 320 × 0.95 198 + 304 = 502 (iii) 180 × 1.1 + 320 × 0.95		3p + 2m = 1180(i)	M1	or equivalent
substitute $p = 180$ in (ii) $2 \times 180 + m = 680$ m = 320 p + m = 180 + 320 = 500 (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		4p + 2m = 1360 (iii)		
$2 \times 180 + m = 680$ m = 320 p + m = 180 + 320 = 500 (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 B1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		p = 180		
$2 \times 180 + m = 680$ m = 320 p + m = 180 + 320 = 500 (ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502 A1 B1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		substitute $n = 180$ in (ii)		
$m = 320$ $p + m = 180 + 320 = 500$ (ii) $180 \times 1.1 + 320 \times 0.95$ $198 + 304 = 502$ A1 for $p = 180$ and $m = 320$ M1 A1		-		
$p + m = 180 + 320 = 500$ (ii) $180 \times 1.1 + 320 \times 0.95$ $198 + 304 = 502$ M1 A1			1	for $p = 180$ and $m = 320$
(ii) $180 \times 1.1 + 320 \times 0.95$ 198 + 304 = 502		• · · · · · · · · · · · · · · · · · · ·	B1	
198 + 304 = 502		(::) 180 × 1 1 + 220 × 0.05	M1	
170 + 304 - 302			A1	
		$170 \pm 304 = 302$	10	

20.	a) (i) 10:800		
	1:80	B 1	
	height of door on photograph:		
	$=\frac{240}{80}$	M 1	
	= 3 cm	A1	
	(::) I S E = 1.90		
	(ii) L.S.F = $1:80$ A.S.F = $1:6400$	B1	
	\therefore Actual area of the window		4
	-1.4×6400	M1	or equivalent
	$=\frac{1.4 \times 6400}{10\ 000}$		or equivalent
	$= 0.896 \text{ m}^2$	A1	
	b) (i) Volume scale factor		
	$= (\sqrt{16})^3 : (\sqrt{49})^3$	M1	
	= 64 : 343	A1	
	- 01 . 515		
	(ii) Volume of bigger cuboid		
	$-\frac{128}{343}$	M 1	
	$=\frac{128}{64} \times 343$		
	$= 686 \text{ cm}^3$	A1	
		10	


-			
22.	a) $3600 \times 22.07 + 4500 \times 107.93$.	M 1	$\sqrt{\text{conversions}}$
		M 1	sum
	= 565137	A1	
	b) (i) $2000 \times 80.89 + 5000 \times 11.60$	M 1	$\sqrt{\text{conversions}}$
		M 1	sum
	= 219780	A1 -	or equivalent e.g. 35% used correctly
	(ii) $219780 \times \frac{65}{100}$	M1	
	100		
	= 142857		
	Balance:		
	219780 - 142857	M 1	
	= 76923		
	Exchange:		
	76923	M 1	
	$=\frac{76923}{128.55}$		
	$\simeq 598$	A1	
		10	



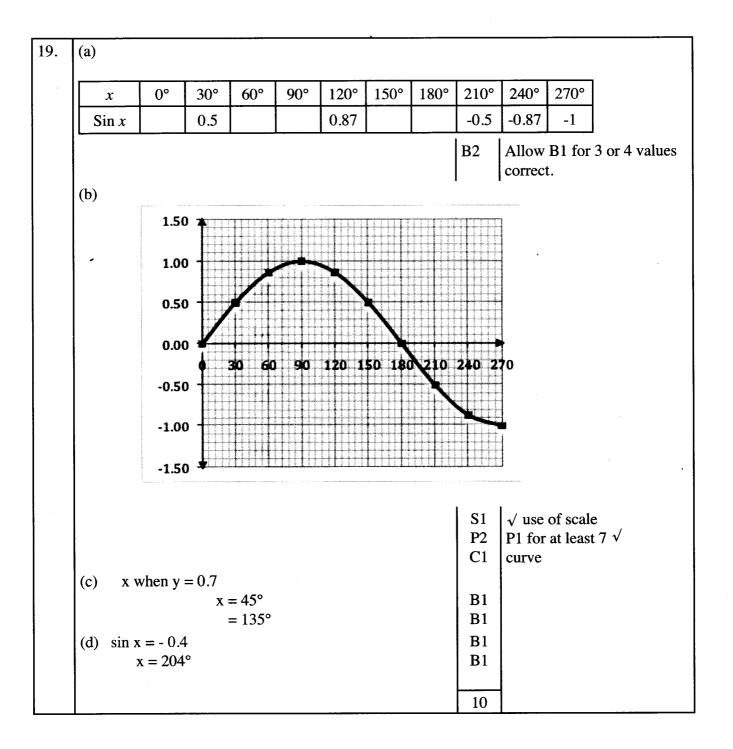
24.	a) $(3x + 1)2x = 6x^2 + 2x$	B1	
,	b) (i) $(2x + 2)4x = 6x^2 + 2x + 36$	M1	
	$2x^{2} + 6x - 36 = 0$ (2x + 12)(x - 3) = 0	M1	
	x = 3	A1	
	(ii) area of carpet		
	= 3(3) + 1 + 2(3)	M1 A1	
	$= 10 \times 6 = 60 \mathrm{m}^2$		
	c) Cost of carpet	M1	
	$= 60 \times 1600$ = 96000		
	Cost of labour	M1	
	$= 96000 \times 0.025$ = 2400		
	Total cost = $96000 + 2400$	M1 A1	
	= 98400	10	

<u>.</u>			,
1.	$200 + \frac{90 \times 5}{10}$	B1	rounding off
	10	M1	\checkmark operations
	= 245	A1	
	- 245		
		3	
2.			
2.	2		
	$mn = pm^2 - pn$	M1	
	$mn + pn = pm^2$		
	mn + pn - pm		
	(()		
	$n(m+p)=pm^2$	M 1	
	nm^2		· .
	$n = \frac{pm^2}{m+p}$	A1	
	m + p		
		3	
3.			
	x(x-3)=108	B 1	or equivalent expression
	2 2 100 0		•
	$x^2 - 3x - 108 = 0$		
	(x-12)(x+9) = 0	M1	· · · · · · · · · · · · · · · · · · ·
	x = 12 or x = -9		
	\therefore length = 12m	A1	
		3	· ·
4 (1)		B1	classes
4. (a)	CLASS 1-10 11-20 21-30 31-40 41-50	DI	Classes
·	FREQUENCY 3 8 10 8 7	B 1	frequencies
			1
(b)	modal class		
	= 21 - 30	B1	
		<u> </u>	1
		3	
	-	- '	
5.	Interest = $195600 - 120000$		
	= 75600	B 1	
	7		
	Rate: $120000 \times R \times \frac{7}{2} = 75600$	M1	
	~		
	$\implies R = \frac{75600 \times 2}{120000 \times 7} \times 100$		
· ·	120 000 × 7		
	= 18%	A1	
		3	
L			

5.1.4 Mathematics Alternative B Paper 2 (122/2)

12.	1^{st} bracket: 9680 $\times \frac{10}{100}$	M 1	
	= 968		
	2^{nd} bracket: $(16420 - 9680) \times \frac{15}{100}$	M 1	
	= 1011		
	Net tax: $(968 + 1011) - 1056$ = 923	M1 A1	
		4	
13.	a = 50000; r = 1.1	B 1	
-	$s_n = 50000 \times \frac{(1.1)^3 - 1}{1.1 - 1}$	M1	
	= 165 500	A1	
		3	
14.	Longitude difference = $15^\circ + 6 = 21^\circ$	B 1	
	<i>Time diference</i> = $21 \times 4 = 84 \min$	B 1	
	local time at $R = 8.30 + 1h 24 \min$ = 9.54 pm	B 1	
		3	
15.	$ \begin{pmatrix} P & Q & R & P' & Q' & R' \\ \binom{a & b}{c & d} \binom{-3 & 1 & 4}{1 & 3 & -2} = \binom{6 & -2 & -8}{-2 & -6 & 4} $	M 1	
	$ \begin{array}{rcl} -3a+b=&6&c+3d=-6\\ a+3b=-2&4c-2d=&4\end{array} $	M1	
	a = -2 $c = 0b = 0$ $d = -2$	A1	
	$Matrix = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$	B 1	
		4	L

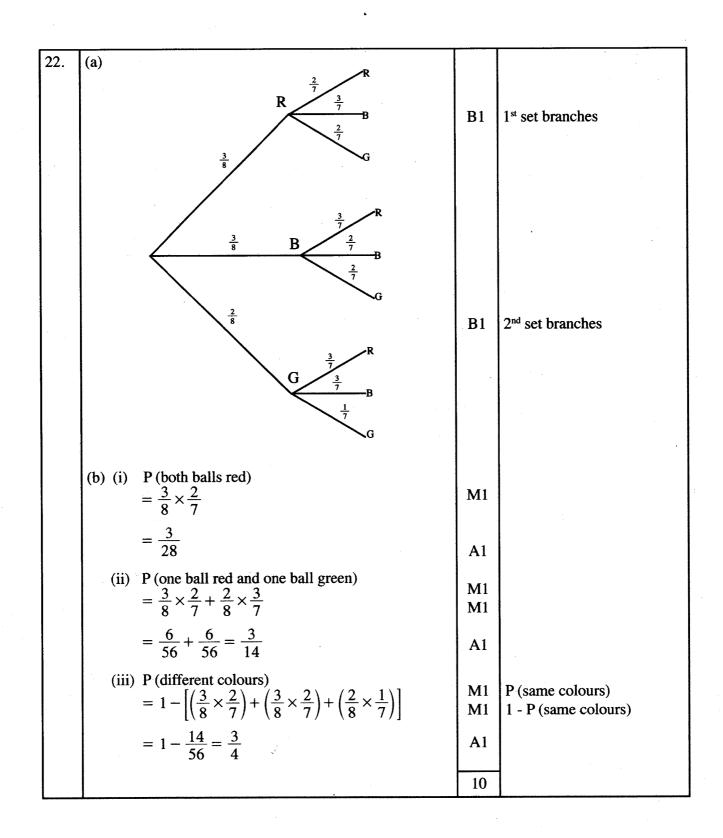
Ŀ

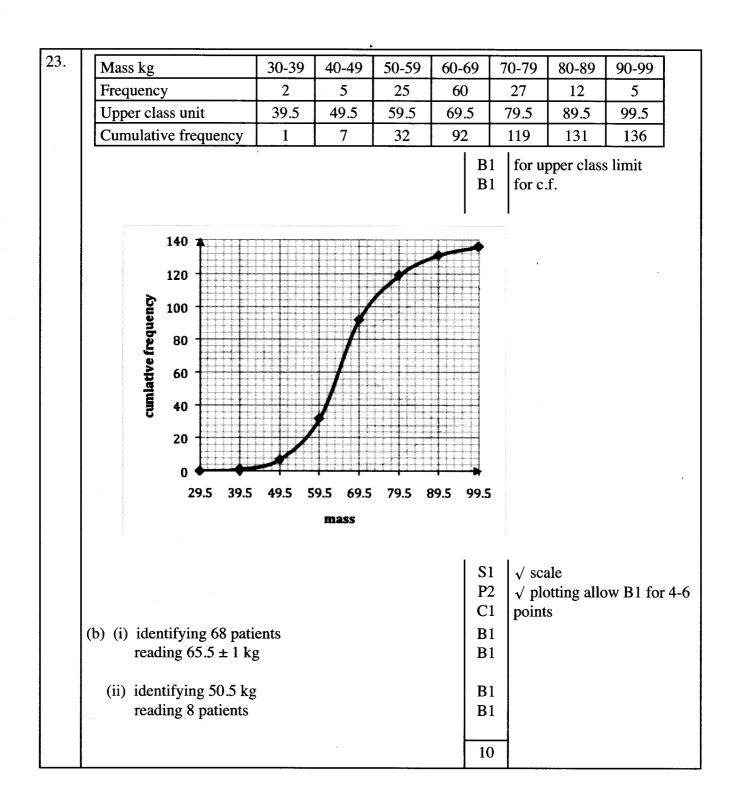

256

-

Ť

16.		B1	√ ordinates
10.	x 0 1 2 3 4 5		 ordinates (may be implied from working)
,	2 3 6 11 18 27		(may be implied from working)
	$y = x^2 + 2$		
	Area = $\frac{1}{2}$ {(2 + 27) + 2(3 + 6 + 11 + 18)}cm ²	M1	
	$\frac{1}{2}$ {29 + 2 × 38}		
	$= 52.5 cm^2$	A 1	· · · · · ·
			1
	· · · · · ·	3	
17.	(a) (i) <i>Mass of type x</i> : $\frac{7}{10} \times 20 = 14kg$	B1	
	Mass of type y: $\frac{3}{10} \times 20 = 6kg$	B 1	
	(ii) $Cost \operatorname{Pr} ice = 14 \times 150 + 6 \times 240$	M 1	
	= Sh 3 540		
	Selling $Price = Sh \frac{125}{100} \times 3540$	M1	
	= Sh 4 425	A1	
	(b) (i) $\frac{150a + 240b}{a + b} = 186$	M1	
	150a + 240b = 186a + 186b		
	36a = 54b	M1	
	a:b = 3:2	A1	
	(ii) $\frac{3}{5} \times 500g$	M1	
	= 300g	A1	
	· · · · · · · · · · · · · · · · · · ·	10	


10		T	
18.	(a) $R = \begin{pmatrix} x & 3 \\ 2x & 3x \end{pmatrix}$		
·	$\therefore 3x^2 - 6x = 0$	M1	
	3x(x-2)=0	M1	
	x = 0 or x = 2	A1	
	(b) (i) $BA = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$	B1	
	$= \begin{pmatrix} 4 & -2 \\ 2 & 4 \end{pmatrix}$		
	(ii) $3B = 3\begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ 0 & 3 \end{pmatrix}$	B1	
	(iii) $P = \begin{pmatrix} 4 & -2 \\ 2 & 4 \end{pmatrix} - \begin{pmatrix} 6 & -3 \\ 0 & 3 \end{pmatrix}$	M1	
	$= \begin{pmatrix} -2 & 1 \\ 2 & 1 \end{pmatrix}$	A1	
-	(iv) $ \mathbf{P} = -2 \times 1 - 2 \times 1$		
	=-4	B1	
	Inverse of P = $-\frac{1}{4} \begin{pmatrix} 1 & -1 \\ -2 & -2 \end{pmatrix}$	M 1	
	$\left(-\frac{1}{4},\frac{1}{4}\right)$		
	$= \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$	A1	
		10	



		· · · · · · · · · · · · · · · · · · ·		
20.	(a) (i)	$OP = \frac{2.5}{\sin 50^{\circ}}$	M1	
		= 3.26 cm	A1	
	(ii)	$AP = \frac{2.5 \sin 40^\circ}{\sin 50}$	M1	•
		= 2.10	A1	
	(iii)			
		AC = 2 AE = 2 × 2.5 sin 40°	M1	
		= 3.21	A1	~
	(b) (i)			
		$\angle PAC = 40^{\circ}$ (sum of $\angle s$ in $\triangle AEP$)	B1	
	-	$\angle ADC = 40^{\circ}$	B1	
		(angle in alt. segment)		
	(ii)			
		$\angle ACD = \frac{1}{2}(180^\circ - 40^\circ)$	M1	
		= 70°	A1	
			10	
21.	(a)	Value of car after 3 years		
		(100 - 10)% = 90%	M1	
		500000×0.9^{3} = 364 500	M1 A1	
		= 304 500		
	(b) (i)			
		364500 × 1.15	M1	
		= 419 175	A1	
	(ii)			
		419175×1.12^{2}	M1	
		= 525 813	A1	
	(c)	% gain from investment $(525813 - 364500)$	M1	
		$=\frac{(525813 - 364500)}{364500} \times 100$	M1	
		= 44.3%	A1	
		· · · · · · · · · · · · · · · · · · ·	10	

L

			· · · · · · · · · · · · · · · · · · ·
24.	(a) (i) $S = \frac{kT}{R}$	B1	
	$\Rightarrow 18 = \frac{k \times 9}{4}$		
	$k = \frac{18 \times 4}{9}$	M 1	· ·
	= 8	A1	
	(ii) S = 8T		
	$S = \frac{8T}{R}$	B1	
	(iii) value of T when $S = 108$ and $R = 6$		
	$T = \frac{S \times R}{8}$	M1	making T the subject
	$=\frac{108\times 6}{8}$	M1	\checkmark substitution
	= 81	A1	
	(b) % change of S		
	New S = $\frac{8 \times T}{1.2R}$	M 1	
	Old S = $\frac{8T}{R}$		
	change = $\frac{8T}{1.2R} - \frac{8T}{R}$	M1	
	$\% = \left(\frac{1}{1.2} - 1\right) \times 100$		
	$=-16\frac{2}{3}\%$	A1	
		10	

• • •