Name:	• • • • • • • • • • • • • • • • • • • •	Index No	•
	Candi	idate's Sign.	
		Date:	

233/3

CHEMISTRY

Paper 3

TIME: 2 1/4 HOURS

MODEL07102022001

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry Paper 3
Practical
TIME: 2 1/4 HOURS

INSTRUCTIONS TO THE CANDIDATES:-

- Write your name and index number in the spaces provided
- Answer all the questions in the spaces provided.
- Mathematical tables and silent electronic calculators may be used.
- All working **MUST** be clearly shown where necessary.
- Use the first 15 minutes of the 2 ¼ hours to ascertain that you have all the chemicals and apparatus that you may need.

For Examiners use Only

QUESTION	MAX. SCORE	CANDIDATE'S SCORE
1	14	
2	10	
3	16	
TOTAL SCORE	40	

This paper consists of 6 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

You are provided with:-

- Zinc powder, solid **S**
- 0.5M HCl, solution **B.**
- 0.25M NaOH, solution C
- Distilled water

You are required to determine the:

- (i) Number of moles of hydrochloric acid that remain unreacted.
- (ii) Number of moles of zinc powder that reacted

(b) Calculate the number of moles of:

Procedure

Using a burette, measure 50cm^3 of solution **B** and place it in 100ml beaker. Put all of the solid **S** in the 50cm^3 of solution **B** in the 100ml beaker. Leave the content in the beaker to react for about 5minutes. Filter the solution using filter paper and funnel into a 250ml Volumetric flask and top up to the mark with distilled water: Lable this solution as solution **D**.

Empty the burette and fill it with solution **C**. Pipette 25cm³ of solution **D** and place it into an empty 250ml conical flask. Add two drops of methyl orange indicator and titrate solution **C** against solution **D**. Record the result in the table 1 below. Repeat the titration of solution **C** against solution **D** and complete the table 1 below

	1	2	3
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution C used (cm ³)			

(5mks)

(a) Calculate the average volume of solution **C** used

(1mk)

(i) Sodium hydroxide used (1mk)

(ii) Hydrochloric acid, in 25cm³ of solution **D** used (1mk)

(iii)Hydrochloric acid in 250cm ³ of solution D used	(1mk)
(: NI	(1 1)
(iv)Hydrochloric acid in 50cm ³ of solution B	(1mk)
	•••••
(v)Hydrochloric acid that reacted with Zinc powder	(2mks)
(vi)Calculate the mass of Zinc that reacted (R.A.M of Zn= 65)	(2mk)

2. You are provided with the following:

- (i) 2M sodium hydroxide, solution **P**
- (ii) 2M Hydrochloric acid, solution Q

You are required to determine the molar enthalphy of neutralization of the acid using sodium hydroxide.

Procedure

Measure exactly 40cm^3 of solution **Q** into a clean 250ml plastic beaker.

Record the temperature of this solution in the table below. Measure 10cm^3 of sodium hydroxide solution, solution **P** and add it to the hydrochloric acid, solution **Q** in the plastic beaker. Stir with the thermometer and record the maximum temperature reached. Repeat the above procedure adding 10cm^3 portions of sodium hydroxide until the total volume of the solution is 100cm^3

Volume of acid (cm ³) (Q)	40	40	40	40	40	40	40
Volume of NaOH added (cm ³) (P)	0	10	20	30	40	50	60
Temperature (⁰ C) of solution							

(a) Plot the graph of temperature rise (**Y- axis**) against volume of sodium hydroxide added

(3mks)

From your graph;

(i) Determine the expected temperature rise ΔT

(1mk)

(iii) Calculate the molar enthalpy of neutralization for this reaction.

(take
$$C = 4.2 \text{kJkg}^{-1} \text{k}^{-1}$$
, density of solution 1g/cm^3)

(2mks)

(i) Add about 10cm^3 of	distilled water to solid W	, and shake
OBSERVATIO	N	INFERENCE
	(1mk)	(1mk)
i) Divide the product in	(i) into four equal portion	ns. Add 5 drops of 2M sodium hydroxi
o the first portion	(a) and rous equal position	
OBSERVATIO	N	INFERENCE
	(½ mk)	(1mk)
Add 2.2 drama of load	(ii) nituata aalusti an ta tha	
OBSERVATIO	(ii)nitrate solution to the s	INFERENCE
	(½ mk)	(½ m
) To the third portion	n, add 2-3 drops of bariun	n (ii) chloride provided followed by 5
hydrochloric acid.	Shake the mixture well.	
OBSERVATIO	N	INFERENCE
	(1mk)	(1mk)
		1

(1mk)	(1mk)

(b)(i) To about 2cm^3 of solution **K**, add few drops of sodium hydroxide till in excess.

OBSERVATION	INFERENCE
(1mk)	(½ mk)

(ii)To about 2cm³ of solution **K**, add 2-3drops of Barium chloride solution

OBSERVATION	INFERENCE
(1mk)	(1mk)

(iii) To about 2cm³ of solution **K**, add 2cm³ of bromine water provided

OBSERVATION	INFERENCE
(1mk)	(½ mk)

(iv) To about $2cm^3$ of the solution **K**, add 2-3 drops of lead (ii) nitrate solution.

OBSERVATION	INFERENCE
(1mk)	(½ mk)