\qquad
\qquad Date: \qquad

CHEMISTRY

Paper 3

TIME: 2 ¼ HOURS

MODEL07102022001

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry Paper 3

Practical
TIME: $2 ¼$ HOURS

INSTRUCTIONS TO THE CANDIDATES:-

- Write your name and index number in the spaces provided
- Answer all the questions in the spaces provided.
- Mathematical tables and silent electronic calculators may be used.
- All working MUST be clearly shown where necessary.
- Use the first 15 minutes of the $2 \frac{1}{4}$ hours to ascertain that you have all the chemicals and apparatus that you may need.

For Examiners use Only

QUESTION	MAX. SCORE	CANDIDATE'S SCORE
1	14	
2	10	
3	16	
TOTAL SCORE	$\mathbf{4 0}$	

This paper consists of 6 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

You are provided with:-

- Zinc powder, solid \mathbf{S}
- 0.5 M HCl , solution B.
- 0.25 M NaOH , solution \mathbf{C}
- Distilled water

You are required to determine the :

(i) Number of moles of hydrochloric acid that remain unreacted.
(ii) Number of moles of zinc powder that reacted

Procedure

Using a burette, measure $50 \mathrm{~cm}^{3}$ of solution \mathbf{B} and place it in 100 ml beaker. Put all of the solid \mathbf{S} in the $50 \mathrm{~cm}^{3}$ of solution B in the 100 ml beaker. Leave the content in the beaker to react for about 5 minutes. Filter the solution using filter paper and funnel into a 250 ml Volumetric flask and top up to the mark with distilled water: Lable this solution as solution D.

Empty the burette and fill it with solution \mathbf{C}. Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{D} and place it into an empty 250 ml conical flask. Add two drops of methyl orange indicator and titrate solution \mathbf{C} against solution \mathbf{D}.
Record the result in the table 1 below. Repeat the titration of solution \mathbf{C} against solution \mathbf{D} and complete the table 1 below

	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution C used $\left(\mathrm{cm}^{3}\right)$			

(a) Calculate the average volume of solution \mathbf{C} used
(b) Calculate the number of moles of:
(i) Sodium hydroxide used
\qquad
\qquad
\qquad
\qquad
(v)Hydrochloric acid that reacted with Zinc powder

2. You are provided with the following:

(i) $\quad 2 \mathrm{M}$ sodium hydroxide, solution \mathbf{P}
(ii) 2 M Hydrochloric acid, solution \mathbf{Q}

You are required to determine the molar enthalphy of neutralization of the acid using sodium hydroxide.

Procedure

Measure exactly $40 \mathrm{~cm}^{3}$ of solution \mathbf{Q} into a clean 250 ml plastic beaker.
Record the temperature of this solution in the table below. Measure $10 \mathrm{~cm}^{3}$ of sodium hydroxide solution, solution \mathbf{P} and add it to the hydrochloric acid, solution \mathbf{Q} in the plastic beaker. Stir with the thermometer and record the maximum temperature reached. Repeat the above procedure adding $10 \mathrm{~cm}^{3}$ portions of sodium hydroxide until the total volume of the solution is $100 \mathrm{~cm}^{3}$

Volume of acid $\left(\mathrm{cm}^{3}\right)(\mathbf{Q})$	40	40	40	40	40	40	40
Volume of $\mathbf{N a O H}$ added $\left(\mathrm{cm}^{3}\right)(\mathbf{P})$	0	10	20	30	40	50	60
Temperature $\left({ }^{0} \mathbf{C}\right)$ of solution							

(a) Plot the graph of temperature rise (\mathbf{Y} - axis) against volume of sodium hydroxide added

From your graph;
(i) Determine the expected temperature rise $\Delta \mathbf{T}$
(iii) Calculate the molar enthalpy of neutralization for this reaction.
(take $\mathrm{C}=4.2 \mathrm{kJkg}^{-1} \mathrm{k}^{-1}$, density of solution $1 \mathrm{~g} / \mathrm{cm}^{3}$)
3. You are provided with solid \mathbf{W} and solution \mathbf{K}. You are required to carry out the tests prescribed in solid \mathbf{W} and solution \mathbf{K}. Write your observation and inferences accordingly.
(a) Place all solid \mathbf{W} in a boiling tube
(i) Add about $10 \mathrm{~cm}^{3}$ of distilled water to solid \mathbf{W}, and shake

OBSERVATION	INFERENCE		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

ii) Divide the product in (i) into four equal portions. Add 5 drops of 2 M sodium hydroxide solution to the first portion

OBSERVATION	INFERENCE	
	$(112 \mathrm{mk})$	

(iii)Add 2-3 drops of lead (ii)nitrate solution to the second portion.

OBSERVATION	INFERENCE	
	$(1 / 2 \mathrm{mk})$	

(iv) To the third portion, add 2-3 drops of barium (ii) chloride provided followed by 5 drops of 2 M hydrochloric acid. Shake the mixture well.

OBSERVATION	INFERENCE
	$(1 \mathrm{mk})$

(v) Add 5 drops of acidified potassium dichromate (vi) to the fourth portion
OBSERVATION \quad INFERENCE

$(1 \mathrm{mk})$	

(b)(i) To about $2 \mathrm{~cm}^{3}$ of solution \mathbf{K}, add few drops of sodium hydroxide till in excess.

OBSERVATION	INFERENCE
	$(1 \mathrm{mk})$

(ii)To about $2 \mathrm{~cm}^{3}$ of solution \mathbf{K}, add 2-3drops of Barium chloride solution

OBSERVATION	INFERENCE	
	$(1 \mathrm{mk})$	

(iii) To about $2 \mathrm{~cm}^{3}$ of solution \mathbf{K}, add $2 \mathrm{~cm}^{3}$ of bromine water provided

OBSERVATION	INFERENCE
	$(1 \mathrm{mk})$

(iv) To about $2 \mathrm{~cm}^{3}$ of the solution \mathbf{K}, add 2-3 drops of lead (ii) nitrate solution.

OBSERVATION	INFERENCE
	$(1 \mathrm{mk})$

