NAME:	MARKING SCHEME.
INDEX NO:.	
	KENYA CERTIFICATE OF SECONDARY EDUCATION
	PHYSICS 232/1

TIME: 2 HOURS

PAPER 1

SUKELLEMO INSTRUCTIONS TO CANDIDATES.

Write your name and Index Number in the spaces provided above. Attempt ALL questions in the spaces provided. All working MUST be shown.

For Evaminan's was only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
A	1-12	25	
Balletal-C	13	10	
7	14	09	
В	15	9	
	16	10	
	17	9	2.30.00
	18	7	
tempte kac	Total	80	

The paper consist of 15 printed pages. Candidates should check to see that no page is missing.

SECTION A (25marks)

1. A micrometer is used to measure the diameter of a uniform wire

State what is done in order to obtain an accurate answer. (1mark)

Wire is held between and Spinelle:

Micrometer is closed using a ratchet until the wire is held gently: Latchet Slips when object is gripped firmly enough. Main scale and thimble Scale readings are noted.

2. The figure below shows a mercury thermometer

This thermometer has a suitable range for use in laboratory experiments, but has a **low** sensitivity for some experiments.

(i) With reference to this thermometer, what is meant by low sensitivity. (1 mark)

. Does not respond fast to small changes in temperature

. Scale Garnot Indicate very Small Changes in the thermometer.

. Accuracy of thermometer is 5.0°C

Any 1 x 1 mk.)

(ii) State one change in the design of a thermometer that increases its sensitivity.(1mark)

Change scale to accomodate very small.
Changes in temperative.

3.	The figure below shows a very light polystyrene ball placed in a flask. When a jet of violently blown over the mouth of the flask, the ball is observed to rise from the bottom	air is
	From Air	
	A child slides down blower	
	Flask	
	Polystyrene	
	ball	
	Explain the observation. (2 mar	
	Due to high speed of air at the routh a reg of low pressure is created. The greater atmosphere pressure in the flash pushes the bell reproads.	ion
	of low pressure is created. The greater	
	atmosphere prossure in the flash pushes the	2
	bell inporands.	
4	A fixed mass of gas undergoes a change of volume at constant temperature	
	Sketch a graph showing the relationship between the volume and the pressure of	the
	gas. (1ma)	rk
0	Pressure /	
Pres	sure!	
	SP.	
	+ + + + + + + + + + + + + + + + + + + +	
	Volume Tolume	limit
	The figure below shows a graph of Force (N) against extension for a spring with elastic of exceeded:	IIIIII
11,		
	Force (N)	
	Force	
	-	
	0 6 Extension (m)	

6. A child slides down a slide.

The weight of the child is 250 N. The height of the slide is 7.0 m. The work done against friction as the child travels down the slide is 1300 J.Determine the speed the child reaches the ground with.

(3marks)

child reaches the ground with.	From W=mg
P. E of child = 250 x7	musofilid = 250 = 25 kg.
= 17500 NM	at the bottom 10
Total Energy = 175000+13000	1/2 = 3050 V
	V = \(\overline{6100}{000}
= 3050],/1	11.00 to 0 m/s
	- 40140, P

7 The figure below shows a liquid in a pail

(a). If the pressure exerted at the bottom of the pail by the liquid is 3555N/m² determine the density of the liquid. (2marks)

P= hgg 1 3555 = 0.45 x fx10 f = 790 kg/m3 / b) Suggest a reason why pail manufactures prefer the shape shown to other shapes.(1mark)

In order to reduce the height of the fail but maintain the Capacity. This reduces the pressure exerted by the liquid at the bottom of the pail.

8. A large spring is stretched by an athlete to increase the strength of his arms. The athlete extends the spring, as shown in the figure below, and then releases it gently. He extends and releases the spring several times during a period of 60 s.

During **one** extension of the spring, its length increases from 70 cm to 93 cm. The average force exerted by the athlete is 400 N.

Calculate the work done by the athlete in one extension.

(2marks)

Work done = Force x extension

= 460×0.23 /1 = 92.0J. /1

The diagram shows a wheelbarrow and its load, which have a total weight of 150 N. This is supported by a vertical force F at the ends of the handles.

Civillivise	and the same of th		
	150 × 0.75	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I	

F= 75.0N / 1

10. At the start of the day the temperature of the air in the classroom is 18 °C. Calculate the energy needed to raise the temperature of the air in the classroom from 18 °C to 30 °C. The specific heat capacity of air is 970 J/(kg °C). (2marks)

Where mis the mans of air, = Mx970x12V = 364m.0 J. VI

11. A beaker of liquid is placed under a bell jar. The pressure of the air above the liquid is reduced.

State and explain the observation which will be made in the liquid.

The liquid cools down, Molecules at the Surface cape to occupy the Parkal vacuum exected above the Liquid.

Water of depth 10 m exerts a pressure equal to atmospheric pressure. 12. An air bubble rises to the surface of a lake which is 20 m deep. When the bubble reaches the surface, its volume is 6.0 cm³.

Calculate the volume of the air bubble at the bottom of the lake.

 $P_1 = 30 \times 1000 \times 10$ = 300 000 N/M² $300 000 \times V_1 = 100 000 \times 6 V$

SECTION	B(55	marks)
---------	------	--------

State the law of conservation of energy. 13.(a)

(1mark)

Energy can neither be created nor destroyed but can only transfered from one form

The figure below shows a 3.0kg block attached to a 2.0kg mass by a light (b) inextensible string which passes over a frictionless pulley. The force of friction between the horizontal surface and the block is 5N. The block is released from rest so that both masses move a distance of 0.8m.

Calculate

the acceleration of the system.

the velocity of the 2kg mass after falling through the 1 U = U + 2aS(ii)

 $a = 3m/s^2$ $V^2 = 0^2 + 2x3$

(iii) the work done against friction. (1mark) $W = E \times d$

= 5N X 0.8M

(1V)	the tension of the string before the block hits the ground.	(3marks)
	Mg-T= ma VI T= 14N VI	(4marks)
	$(2 \times 10) - T = 2 \times 3$ 20 - T = 6	
	20-T=6	
	-T 1/1	

14. (a) State Boyles la	vles law	Boyl	State	(a)	14.
-------------------------	----------	------	-------	-----	-----

(1mark)

The pressure of a fixed mass of gas is inversely proportional to its volume provided the temperature is Kept Constants.

(b) Sketch a set-up of apparatus that can be used to verify the Boyles law. (4marks)

(c) Air is trapped inside a glass tube by a thread of mercury 250mm long. the air column is 200mm when the tube is held horizontally.

Given that the atmospheric pressure is 750mm Hg, determine the length of air column when the tube is held as shown in the diagrams below. (4marks)

ii).	State three forces affecting the movement of the ball as it falls in the oil. (3marks)
	· Weight of the ball bearing VI
	Viscouse doing due to liquid 1/1
ii.	Explain which of the forces in b (i) above varies as the ball falls. (1mark)
	Viscous drag increases with increase in velsity of the ball reported when weight becomes equal to the upward forces (upthrist force t usaw dry)
iii.	What is the net force acting on the ball that is moving at terminal velocity? (1mark)
	Zeroi
iv.	Sketch a graph to show the variation of resultant force on the ball with velocity from the moment it was released.
P	the moment it was released. Resultant force a zeinet Velnty elutant
Olete (i)	force - Labelling of axes
	- Curve
16.	Define the term atmospheric pressure. (1 marks)
	The pressure exerted on the Surface of the
	earth by weight of the air Column above it.
<i>a</i> >	
(b)	The Figure below shows a hydraulic lift supporting a load of 150kg. Its cross-sectional areas A_1 and A_2 are $0.02m^2$ and $0.4m^2$ respectively. The length of the effort arm is 1m and the length of the plunger from the pivot is 0.4m.

Determine:

the pressure exerted by 150kg mass.

(2 mark)

 $P = \frac{1}{A}$; p = 1500= 3750.0 N/M2

the pressure exerted by F₁ on the smaller piston. (ii).

(1 mark)

3750,0N/M2 V)

(iii). the force F_1 . (2 marks) ·

F = Px A V 1 2 1 = 3750 x0.02 = 75.0N. VI

		= Anticlockinge momente
	Fe = 757x0.4 Fe = 757x0.4	= 30.0 NV
(v).	the mechanical advantage. M - A = Load Effect	(2 marks)
	= 50.0 = 50.0	
(vi).	the velocity ratio of the system. V. $P_1 = \frac{P_1 P_2}{P_1 P_2} = P_1$	(2 marks) Trea of load piston V.R. flere - Effort Low of February Control
	press =	0.02 0.02 20.00 20
(vii)	the efficiency of the system.	$(2 \text{ marks}) = \frac{S0.0}{}$
	e thickney = MA	×100 /
	50	2 VIOD
17.(a)(i) State the law of floatation.	(1mk)
	A floating bodi of the fluid in	olisplaces its own weight which it floats.

18. A stone is thrown with a horizontal velocity *u* from the top of a building of height 125m so as to hit a target on the ground 75m from the base of the building as shown in Figure 9 below.

The first term of the stone to hit the target. (2 marks) $S = \frac{1}{2}9t^{2} + \frac{1}{2} + \frac{1}{2}$

(c) A stone of mass 0.5kg is attached to a string of length 0.5m which will break if the tension exceeds 20N. The stone is whirled in a vertical plane, the axis of rotation being above the ground, as shown in the Figure 10 below.

