KANDARA SUB-COUNTY FORM 3 JOINT EVALUATION

Kenya Certificate of Secondary Education

BIOLOGY

Paper - 231/2

October/November 2016

Marking Scheme

1.a)i) Capillaries;

- ii) Site of exchange of materials between the blood and the cells;
- iii) Numerous for efficient transport;
- Have a thin lining /epithelium for easy diffusion;
- They are narrow to create pressure for ultrafiltration:
- b) Pulmonary arterioles

Pulmonary venules.

- Low oxygen concentration
- High oxygen concentration
- High carbon (IV) oxide concentration.
- Low carbon (IV) oxide concentration:
- c) Have valves to prevent back flow of blood;
- Have a wide lumen to reduce resistance to blood flow.
- Passes through skeletal muscles which push the blood forward;
- 2. i) Osmosis;
 - ii) The feel is impervious; hence cannot allow water to pass through;
 - iii)The sugar solution level rises /water level in the trough falls; water moves from the trough through the semi permeable cell membrane of the pawpaw by osmosis; to the sugar solution; causing it to rise.
 - iv)No change / no observation change; boiling destroy / alters / changes the cell membrane structure hence the water cannot pass through / osmosis cannot take place;

3.a)i) Herbivorous Rej: Herbivore acc. Herbivory.

Structural

ii) Tooth J is narrow / sharp / chisel like while tooth L is broad / ridged. Acc. J has one root while L has 2/3/4 roots.

Functional

Tooth J is used for bitting / cutting while L is used for grinding.

- ii) Diastema
- b) Broad flat lamina to give a large surface area for absorption of carbon (IV) oxide and sunlight.
- It is thin to reduce the distance through which gases travel.
- Has a transparent cuticles to allow light to reach photosynthetic cells.
- Has palisade cells on the upper side for efficient absorption of light energy.
- Has large number of chloroplasts to trap/ absorb light energy.
- Extensive network of veins for effective transportation of water and minerals salts and synthesised food.
- Has air spaces in the spongy mesophyll for faster movement of gases.
- **4.**a) It is thin to reduce distance of diffusing gases moist to dissolve gases.
- Presence of dense capillaries to transport the gases.
- Numerous to increase the surface area.
- Well ventilated to maximize the amount of air getting to these surface.
- ii) Adult frog skin / mouth / lungsWhale lungs / alveoli.

- b) A spiracle Y - Tracheole.
- ii) Allows air in and out of the tracheal system;
- iii) To offer support / prevent collapsing of the trachea.

5. a)

	Kingdom	Reason	
Х	Proctoctista	Has a definite nucleus; has cell membrane only enclosing the cytoplasm; has membrane bound organelles	
У	Monera	Has no nucleus / DNA is suspended in cytoplasm . Has both cell membrane and cell wall.	

b)

Kingdom	Structure	Reason
J	Capsule	for protection / produces toxins
K	Flagellum	for locomotion

- 6. a) Phytoplankton.
 - b) Hawk
 - c) i) Phytoplankton \rightarrow snail \rightarrow hawk
 - ii) Phytoplankton → zooplanktons →
 frogs → water snakes → hawks;
 Phytoplankton → insects → small fish
 → water snakes → hawks;
 - d) The number / population of water snakes would decrease due to shortage of food;
 - Number of zooplanktons increases due to decrease in predators;
 - e) Decrease in light intensity / poor light penetration; decreases the rate of photosynthesis; (hence decrease in productivity)
- 6. Graph: Dry weights against time

- b) 38.5 ± 0.5 accept a range of 0.5 above and below the given value
- c) i) Hydrolysis of starch into simple sugars; which are translocated to embryo; and oxidised in respiration to release energy (for germination); heat and gaseous products;
 - ii) New materials are synthesized (from proteins); bringing about growth of embryo;
 - iii) The rate of respiration is faster than that of synthesis of materials for growth;
 - iv) First foliage leaves were formed; that carried out photosynthesis leading to growth;
- d) j)- Presence of germination inhibitors (abscisic acid);
- Embryo not fully developed (immaturity of the embryo):
- Absence or inactivity of germination hormones or enzymes (accept gibberellins, cytokinins);
- Impermeable testa (seed coat):
- ii)- Unsuitable temperatures (unfavourable temperatures);
- Absence of light;
- Lack of or absence of water (moisture):
- Lack of oxygen;
- e)- Dense cytoplasm;
- Thin cell wall;
- Absence of vacuoles (cell sap);

7.a) Describe how structural factors decrease the rate of transpiration in terrestrial plants.

Plants in arid and semi arid / desert habitats have leaves covered with thick / waxy cuticles that are water proof / impermeable to water; allowing for reduced rate of transpiration; sunken stomata; in some desert/ semi arid areas plants have water vapour accumulating in the pits is not carried way by wind; most plants have few or no stomata on the upper surface of the leaf / more stomata on the lower surface sheltered by from direct sunlight; the fewer the stomata the less the

water loss from the plant. Some plant have small stomata / small stomatas size; thus reducing transpiration rate plants with small needle like /spine; expose less surface area hence reduce the rate of transpiration leaves with shiny surface; reflect light resulting in reduced leaf temperature thus reducing the rate of transpiration, some plants have leave covered with hairy /scales; which trap a layer of moisture; (on the leaf surface) reducing the rate of transpiration. Plants growing in wet habitats / mesophyets have a thin layer of cuticle which allow high rate of transpiration broad leaves; expose a large surface area; many stomata on both sides of the leaves; have a large stomata.

7.b)Describe how the various structure of human female reproductive system are adapted to their function.

Ovaries

- have several graafian follicles that develop and burst open to release / produce mature ova.
- Secretes sex hormones (oestrogen) which initiate / control development of secondary sexual characteristics
- Produce hormones oestrogen and progesterone which prepare the uterus for implantation and subsequent nourishment of the embryo.

Oviduct (fallopian tube)

- are thin narrow and tubular to increase flowing speed of semen contain sperms.
- are funnel shaped on the end next to ovary which enables them to receive the ovum.
- their lining contains cilia which propel the ovum towards the uterus.
- has peristaltic muscles that enable movement of zygote / ovum to the uterus for implantation.
- is fairly long to increase surface area for fertilization.

Uterus

- Is muscular for protection of developing embryo.
- has elastic wall that allows growth and development of foetus / embryo.
- has a highly vascularised endometrium that

(RK) FORM 3 - BIOLOGY - 2

provides nutrients/ gaseous exchange to developing embryo.

Cervix

- has valves that close the lower end of the uterus to ensure continued pregnancy during gestation period.
- is capable of dilating.
- has narrow entrance / neck-like entrance to uterus that enables quick swimming of sperms to uterus.
- has suction mechanism that draws up / pulls sperms into uterus.
- has a 'W' shape that fits well with the glands of the penis to ensure sperms are deposited at the right point.

Vagina

- is elastic and muscular to enable good accommodation or penetration of the penis thus proper deposition of sperms and for easy parturition.
- allow menstrual flow.
- has sensitive labial walls which secrete / produce lubricating substances that ensure / enable /facilitate good condition.
- Capable of considerable enlargement, due to elastic muscles, to accommodate baby during parturition.

Clitoris

Has sensitive cells for orgasm

8.a) Describe how excretion takes place in mammalian kidneys.

Blood reaches the kidney from the renal/ renal artery enters the kidney; then branches into capillaries /glomeruli / in the Bowman's capsule, blood vessels leaving the capsule/ efferent are those entering it/afferent causing high pressure to develop in the glomeruli. This forces the plasma / causes ultra filtration into the capsule. The filtrate contains waste products (acc. one example) The filtrate moves in to the proximal / first convoluted tubule; where selective reabsorption of glucose amino acids, some water and vitamins take through the loop of Henle; excretory products / urea, excess water and salts. ac, one example) pass into the distal tubule, where the remaining useful substance (acc. one example e.g. salt and water) are

reabsorbed; the filtrate passes into the collecting tubule; where more reabsorption of water takes place; Excess water, urea and salts (all three must appear) / Urine are removed through the ureter.

b) Explain how abiotic factors affect living organisms.

Wind.

- this influences rate of water evaporation from organisms.
- therefore it affects distribution of organisms e.g. wind increases rate of transpiration and evaporation of water from the soil.
- wind is an agent of soil erosion, may break and uproot trees.
- May aid in the formation of sand dunes which can form habits for some desert plants.
- Wind disperses fruits, seeds, spores.
- Wind forms waves in lakes and oceans which enhances aeration of water which replenishes oxygen concentration necessary for life.
- Wind is an agent of pollination.

Temperature.

- Influences rate of enzyme action in photosynthesis and other metabolic reactions in plants and animals.
- Organisms function within a narrow range of temperature.
- it affects distribution of organism.
- changes in temperature affect rate of photosynthesis and biochemical reactions e.g. metabolism and enzyme reaction.
- temperature increases rate of transpiration. **Light.**
- needed by green plants and photosynthetic bacteria which are primary producers.
- animals depend on plants directly or indirectly of food.
- main source of light is the sun.
- light is necessary for synthesis of vitamin D in certain animals.
- some plants need light for flowering.
- seeds like lettuce need light for germination.

Humidity

- amount of water vapour held by the air.
- affects the rate at which water is lost from organisms body by evaporation and stomatal transpiration.
- When humidity is low the rate of transpiration increases.
- humidity influences distribution of organisms.

PH.

- each plant requires a specific pH in which to grow (acidic, natural or alkalinic)
- pH affects enzyme reaction in metabolism.

salinity.

- Some ions are needed for plants and animal nutrition.
- Osmoregulation implants and animals is affected by salinity.

Topography

- altitude affects light, atmospheric pressure and light.
- slope influences surface runoff, wind erosion etc.
- mountains affect distribution of organisms which differs in leeward side and windward side.
- mountains affect distribution of organisms which differ on lowlands and on highlands.
- mountains also form physical barriers to migration of organism and may cause isolation of species.
- Background may offer camouflage to some organisms hence protection from enemies.

Rainfall (water) of precipitation.

- amount of distribution of rainfall affect vegetation type.
- This consequently affects distribution of animals e.g. polar region water frozen hence only well adapted organisms survive.
- fewer organisms found in deserts where rainfall is less.
- Water is required for seed germination, raw material for photosynthesis, solvent for mineral salts. Provides turgidity of plant support, medium for transport, disperses fruits seeds and spores.

Pressure.

- The weight atmosphere exerts upon the earth.
- varies with altitude 9th higher the altitude the less the pressure.
- this variation implies change in density which directly means less oxygen for respiration and less carbon (IV) oxide for photosynthesis and this affects distribution of organisms.

Minerals salts (trace elements)

- these affect destruction of plants in the soil.
- plans thrive best where elements are available.
- plants living in soil deficient in a particular elements must have special methods of obtaining it.
- the harbour nitrogen fixing bacteria and others have carnivorous habit.
- plant distribution influences animal distribution.