4.6.2 Physics Paper 2 (232/2)

SECTION A: (25 marks)

1.	The image size increases √/ is magnified	(1 mark)
2.	a) Gold leaf √	(1 mark)
	b) Protect the surrounding of the metal rod and leaf from damage or	(1 mark)
	drought√	,
3.	The e.m.f. across it's terminals√	(2 marks)
	 The relative density of the acid √ 	(2 1)
4.	From the relation $v = \lambda f$, the speed increases $\sqrt{\ }$ since the	(2 marks)
	wavelength λ increases but the frequency is constant because source is the same $\sqrt{}$	
5.		(3 marks)
	$\eta = \frac{1}{\sin c} \sqrt{\frac{1}{\sin c}}$	
	$=\frac{1}{\sin 42^{\circ}}$	
	$= \frac{1}{0.669} \\ = 1.495 \sqrt{}$	
		,
6.	BV The true calls in social marrials higher electrometry force/notantial	(2 marks)
	The two cells in series provide √a higher electromotive force/potential difference	(2 marks)
	difference	
7.		(1 mark)
	7 =	
	mi :	(2 marks)
8.	There is greater magnetic force at the ends due to increased field lines at the ends of the bar magnet than at the center of the bar magnet	(2 marks)
	at the ends of the bar magnet than at the center of the bar magnet	(2 1)
9.		(2 marks)
	L	
	•	

10.		
10.	2108	(3 marks)
	$f = \frac{3 \times 10^8}{\lambda} $	
	$=\frac{3\times10^8}{800}\checkmark$	
	$-\frac{1}{800}$	
	$=0.00375\times10^8 Hz$	
	$=3.75\times10^{5}Hz$	
11.	 Electrons are produced by thermionic emission√ 	(2 marks)
	 The electrons are accelerated by a high voltage√ 	
	 Electrons are suddenly stopped to produce x- rays√ 	
12.	To disconnect the circuit when excess current flows. $\sqrt{}$	(1 mark)
	discoss carrent nows.	(1 mark)
13.		(2 marks)
	45° (()	(2 marks)
	45	
	√-curved correctly	
	a) anala of moffestion	
	√-angle of reflection	
	SECTION B: 55 MARKS	
14.	(a)	(1mark)
	Stepping up the voltage	(Illium)
	Use of good conductor cables(b)	
	` ´	(1 monte)
	The electric cooker has a power output of 2500W, and operates at a	(1 mark)
	potential 250V, ie P=VI	
	(c)	
	Total power = $1500 + 2500 + 500 + (60 \times 3)$	
	= 4680 W√	
	Total current required = $\frac{4680}{240} = 19.5 A $	
	Hence fuse blows and disconnects the current when it exceeds $10 \text{ A}\sqrt{\text{ie}}$	(4 marks)
	,	
	all appliances can't be connected at the same time. $\sqrt{}$	

	(ii) $V = IR \ \sqrt{}$	
	$I = \frac{p}{v}$	
	$=\frac{2500}{240}$	
	$R= 240 \div \left(\frac{2500}{240}\right) \sqrt{240 \times 240}$	2 1
'	$={2500}$	3 marks
	$= 23.04\Omega $	1 mark
15	a) - Using the mirror focus a distant object onto the screen	1 mark

16	a) - Sterilization of surgical equipment√	2 marks
	- Treatment of malignant growths $\sqrt{\frac{x=4}{y=2}}$	2 marks
	(c) (i) Beta Y Gamma Alpha	3 marks
	 (ii) (I) To shield the radiations from moving to the other directions ie direct them to one side√ (II) To remove air particles & reduce collisions for clear vision of the effect of the field√ 	1 mark 1 mark
	d (i) Gamma rays, X-rays, microwaves, radio waves (ii) $64 \xrightarrow{32} \xrightarrow{32} \xrightarrow{48 \text{ day}} \xrightarrow{72} 8\sqrt{24 \text{ day}} \xrightarrow{48 \text{ day}} \xrightarrow{72} \xrightarrow{36 \text{ half lives}} -88g \text{ left } \sqrt{24 \text{ day}} \xrightarrow{36 \text{ day}} 36 \text$	1 mark 2 marks
17	 a) (i) - The heating coil√ - Grid√ - The anodes√ (ii) the cathode ray tube uses plates for deflection while a television tube uses coils√ 	(3marks) 1 mark

b) (i)
$$eVs = hf - hfo \sqrt{ }$$

3marks

at
$$Vs = O$$
,

$$hf = hfo \sqrt{}$$

f = fo which is obtained by extrapolating the graph to obtain the $\sqrt{}$

value of fo when Vs = o = 4.6

(ii)
$$Vs = \frac{hf}{e} - \frac{hfo}{e}$$

$$\frac{h}{e}(f-fo)$$

$$\therefore \frac{h}{e} = gradient$$

$$= \frac{1.25 - 0.5}{(8 - 6) \times 10^{14}} \sqrt{} = \frac{0.75}{2} \times 10^{-14}$$

$$= 0.375 \times 10^{-14}$$

$$= 0.375 \times 10^{-14} \qquad \therefore \quad h = 3.75 \times 10^{-15} \times 1.6 \times 10^{-19}$$

(3 marks)

$$= 6.0 \times 10^{-34} Js$$

	(iii)	(3 marks)
	$Wo = hfo \sqrt{}$	
	$= 6.0 \times 10^{-34} \times 4.3 \times 10^{14}$	
	$= 25.8 \times 10^{-24}$	
18	$\begin{array}{c} 25.8 \times 10^{-23} J \ \sqrt{} \end{array}$	(2 marks)
	S	(1 made)
	b(i)	(1 mark)
	□ □	
	□	
	(ii) the two conductors repel	(1 mark)
	(iii) As the current flows a magnetic field develops around each	3 marks
	conductor√ such that the direction of the fields such that the	
	fields repel√ another pushing the conductors away from each	
	other√	
	C (i) By laminating the core	(1 Mark)
		(3 mark)
	(ii) $\frac{N_s}{N_p} = \frac{V_p}{V_s}$ $\frac{N_s}{600} = \frac{24}{120}$ $N_s = 120 turns$	